高中物理-选修3-3知识点总结

上传人:花**** 文档编号:144613827 上传时间:2020-09-11 格式:DOC 页数:5 大小:258.50KB
返回 下载 相关 举报
高中物理-选修3-3知识点总结_第1页
第1页 / 共5页
亲,该文档总共5页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《高中物理-选修3-3知识点总结》由会员分享,可在线阅读,更多相关《高中物理-选修3-3知识点总结(5页珍藏版)》请在金锄头文库上搜索。

1、选修33考点汇编一、分子动理论1、物质是由大量分子组成的(1)单分子油膜法测量分子直径油膜法估测分子大小:V=Sd (S单分子油膜的面积,V滴到水中的纯油酸的体积)(2)阿伏伽德罗常数: 任何物质含有的微粒数相同(3)对微观量的估算分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体).球体模型直径d .立方体模型边长d .利用阿伏伽德罗常数联系宏观量与微观量微观量:分子体积V0、分子直径d、分子质量m0.宏观量:物体的体积V、摩尔体积Vm,物体的质量m、摩尔质量M、物体的密度.联系:a.分子质量:b.分子体积:(气体分子除外)c.分子数量:特别提醒:1、固体和液体

2、分子都可看成是紧密堆集在一起的。分子的体积V0,仅适用于固体和液体,对气体不适用,仅估算了气体分子所占的空间。2、对于气体分子,d的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离.2、分子永不停息的做无规则的热运动(布朗运动 扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有空隙,温度越高扩散越快。可以发生在固体、液体、气体任何两种物质之间(2)布朗运动:它是悬浮在液体(或气体)中的固体小微粒的无规则运动,是在显微镜下观察到的。布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。产生

3、布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。布朗运动路线示意图,不是固体微粒运动的轨迹。布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈3、分子间的相互作用力(1)分子间同时存在引力和斥力,两种力的合力又叫做分子力。(2)分子之间的引力和斥力都随分子间距离增大而减小,随分子间距离的减小而增大。但总是斥力变化得较快。(3)图像:两条虚线分别表示斥力和引力;实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。位

4、置叫做平衡位置,的数量级为m。理解+记忆:(1)当r=r0时,F引=F斥,F=0;(2)当rTT(3)温度升高时,速率小的分子数减少,速率大的分子数增加,分子的平均速率将增大(并不是每个分子的速率都增大),但速率分布规律不变7、气体实验定律玻意耳定律:(C为常量)等温变化 微观解释:一定质量的理想气体,温度保持不变时,分子的平均动能是一定的,体积减少时,分子的密集程度增大,气体的压强就增大。 适用条件:压强不太大,温度不太低 图象表达:(图1)T2T1图1查理定律:(C为常量) 等容变化 微观解释:一定质量的气体,体积保持不变时,分子的密集程度保持不变,在这种情况下,温度升高时,分子的平均动能

5、增大,气体的压强就增大。 适用条件:温度不太低,压强不太大 图象表达:(图2)V1V2-273图2盖吕萨克定律:(C为常量)等压变化 微观解释:一定质量的气体,温度升高时,分子的平均动能增大,只有气体的体积同时增大,使分子的密集程度减少,才能保持压强不变 适用条件:压强不太大,温度不太低 图象表达:(图3)P1P2P1P2-273图38、理想气体 宏观上:严格遵守三个实验定律的气体,实际气体在常温常压下(压强不太大、温度不太低)实验气体可以看成理想气体 微观上:理想气体的分子间除碰撞外无其他作用力,分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间故一定质量的理想气体的内能只与温度有关

6、,与体积无关(即理想气体的内能只看所用分子动能,没有分子势能) 理想气体状态方程:,可包含气体的三个实验定律:几个重要的推论(1)查理定律的推论:pT(2)盖吕萨克定律的推论:VT(3)理想气体状态方程的推论:应用状态方程或实验定律解题的一般步骤(1)明确研究对象,即某一定质量的理想气体;(2)确定气体在始末状态的参量p1、V1、T1及p2、V2、T2;(3)由状态方程或实验定律列式求解;(4)讨论结果的合理性9、气体压强的微观解释 大量分子频繁的撞击器壁的结果 影响气体压强的因素:气体的平均分子动能(宏观上即:温度)分子的密集程度即单位体积内的分子数(宏观上即:体积) F= N f (F为单

7、位面积上的作用力,反映压强大小,N为单位时间单位面积撞击分子数,与温度和体积有关,f为单个分子撞击力大小,与温度有关)三、物态和物态变化10、晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异性 非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向同性 判断物质是晶体还是非晶体的主要依据是有无固定的熔点 晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体(石英玻璃)11、单晶体 多晶体 如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗) 如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体没

8、有规则的几何外形,但同单晶体一样,仍有确定的熔点。12、晶体的微观结构:固体内部,微粒的排列非常紧密,微粒之间的引力较大,绝大多数微粒只能在各自的平衡位置附近做小范围的无规则振动。晶体内部,微粒按照一定的规律在空间周期性地排列(即晶体的点阵结构),不同方向上微粒的排列情况不同,正由于这个原因,晶体在不同方向上会表现出不同的物理性质(即晶体的各向异性)。13、表面张力 当表面层的分子比液体内部稀疏时,分子间距比内部大,表面层的分子表现为引力。如露珠(1)作用:液体的表面张力使液面具有_收缩_的趋势(2)方向:表面张力跟液面相切,跟这部分液面的分界线_垂直_(3)大小:液体的温度越高,表面张力越小

9、;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大14、液晶 分子排列有序,光学各向异性,可自由移动,位置无序,具有液体的流动性 各向异性:分子的排列从某个方向上看液晶分子排列是整齐的,从另一方向看去则是杂乱无章的15、饱和汽湿度(1)饱和汽:与液体处于动态平衡的蒸汽(2)未饱和汽:没有达到饱和状态的蒸汽(3)饱和汽压定义:饱和汽所具有的压强特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关(4)湿度定义:空气的干湿程度描述湿度的物理量a绝对湿度:空气中所含水蒸气的压强b相对湿度:空气的绝对湿度与同一温度下水的饱和汽压之比c相对湿度公式相对湿度(B

10、100%)15、改变系统内能的两种方式:做功和热传递热传递有三种不同的方式:热传导、热对流和热辐射这两种方式改变系统的内能是等效的区别:做功是系统内能和其他形式能之间发生转化;热传递是不同物体(或物体的不同部分)之间内能的转移16、热力学第一定律表达式符号+外界对系统做功系统从外界吸热系统内能增加-系统对外界做功系统向外界放热系统内能减少几种特殊情况(1)若过程是绝热的,则Q0,WU,外界对物体做的功等于物体内能的增加.(2)若过程中不做功,即W0,则QU,物体吸收的热量等于物体内能的增加(3)若过程的始末状态物体的内能不变,即U0,则WQ0或WQ,外界对物体做的功等于物体放出的热量17、热力

11、学第二定律(1)常见的两种表述克劳修斯表述(按热传递的方向性来表述):热量不能自发地从_低温_物体传到_高温_物体开尔文表述(按机械能与内能转化过程的方向性来表述):不可能从_单一热源_吸收热量,使之完全变成功,而不产生其他影响a、“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助b、“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响如吸热、放热、做功等(2)热力学第二定律的实质:自然界中进行的涉及热现象的宏观过程都具有方向性的。(3)热力学过程方向性实例(1)高温物体低温物体(2)功热(3)气体体积V1气体体积V2(较大)(4)不同气体A和B混合气体AB特别提醒:热量不可能自发地从低温物体传到高温物体,但在有外界影响的条件下,热量可以从低温物体传到高温物体,如电冰箱;在引起其他变化的条件下内能可以全部转化为机械能,如气体的等温膨胀过程.热机:把内能转化为机械能的装置。从高温热源吸收Q1,推动活塞做功W,然后向低温热源释放Q2有:Q1=W+Q2小于100%18、能量守恒定律 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变 第一类永动机:不消耗任何能量,却可以源源不断地对外做功的机器。不可制成是因为其违背了能量守恒

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号