人教版九年级数学上册第二十三章《旋转》课件

上传人:侗*** 文档编号:141981119 上传时间:2020-08-14 格式:PPT 页数:152 大小:6.69MB
返回 下载 相关 举报
人教版九年级数学上册第二十三章《旋转》课件_第1页
第1页 / 共152页
人教版九年级数学上册第二十三章《旋转》课件_第2页
第2页 / 共152页
人教版九年级数学上册第二十三章《旋转》课件_第3页
第3页 / 共152页
人教版九年级数学上册第二十三章《旋转》课件_第4页
第4页 / 共152页
人教版九年级数学上册第二十三章《旋转》课件_第5页
第5页 / 共152页
点击查看更多>>
资源描述

《人教版九年级数学上册第二十三章《旋转》课件》由会员分享,可在线阅读,更多相关《人教版九年级数学上册第二十三章《旋转》课件(152页珍藏版)》请在金锄头文库上搜索。

1、第二十三章 旋转,人教版九年级数学上册,23.1 第1课时旋转的概念与性质 23.1 第2课时旋转作图 23.2.1中心对称 23.2.2中心对称图形 23.2.3关于原点对称的点的坐标 23.3课题学习 图案设计,第二十三章 旋转,人教版九年级数学上册,23.1 图形的旋转,第1课时 旋转的概念与性质,1.掌握旋转的有关概念及基本性质.(重点) 2.能够根据旋转的基本性质解决实际问题.,导入新课,情境引入,这些运动有什么共同的特点?,讲授新课,观察与思考,B,O,A,问题 观察下列图形的运动,它有什么特点?,钟表的指针在不停地转动,从12时到4时,时针转动了_度.,120,把时针当成一个图形

2、,那么它可以绕着中心固定点转动一定角度.,思考:怎样来定义这种图形变换?,双击打开,风车风轮的每个叶片在风的吹动下转动到新的位置.,怎样来定义这种图形变换?,把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.,双击打开,点击画面中按钮进行操作演示,在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转.,O,P,P,旋转中心,旋转角,对应点,旋转的定义,这个定点称为旋转中心.,转动的角称为旋转角.,转动的方向分为顺时针与逆时针.,如果图形上的点P经过旋转变为点P,这两个点叫做这个旋转的对应点.,知识要点,例1. 三角形ABD经过旋转后到三角形ACE的位置

3、. (1)旋转中心是哪一点? (2)旋转了多少度?顺时针还是逆时针? (3)如果M是AB的中点,经过上述旋转后,点M转到什么位置?,A,B,C,E,M,.,解:(1)旋转中心是点A;,D,典例精析,(2)旋转了60 ,逆时针;,(3)点M转到了AC的中点上.,填一填:若叶片 A 绕 O 顺时针旋转到叶片 B,则旋转中心是_,旋转角是_,旋转角等于_度,其中的对应点有_、 _、 _、 _、 _、 _ .,O,O,AOB,60,F与A,A与B,B与C,C与D,D与E,E与F,B,旋转中心,旋转角,旋转方向,必须明确,确定一次图形的旋转时,温馨提示:旋转的范围是“平面内”,其中“旋转中心,旋转方向,

4、旋转角度”称之为旋转的三要素;旋转变换同样属于全等变换.,归纳总结,A30 B45 C90 D135,例2 如图,点A、B、C、D都在方格纸的格点上,若AOB绕点O按逆时针方向旋转到COD的位置,则旋转的角度为(),解析:对应点与旋转中心的连线的夹角,就是旋转角,由图可知,OB、OD是对应边,BOD是旋转角,所以,旋转角为90.故选C.,C,A,B,B,A,C,M,M,45,绕点C逆时针旋转45.,合作探究,旋转中心是点_; 图中对应点有_; 图中对应线段有_. 每对对应线段的长度有怎样的关系? 图中旋转角等于_.,C,点A与点A,点B与点B,点M与点M,点N与点N,线段CA与CA、CB与CB

5、、AB与AB,45,相等,根据上图填空.,B,A,C,A,B,C,O,线: AO=AO ,BO=BO ,CO=CO,角:AOA=BOB =COC,双击打开,D,E,A,B,F,C,O,1.对应点到旋转中心的距离相等;,2.两组对应点分别与旋转中心的连线所成的角相等.,旋转的性质,知识要点,3.旋转中心是唯一不动的点.,4.旋转不改变图形的形状和大小.,视频:正n边形的旋转特性,例3 如图,点E是正方形ABCD内一点,连接AE、BE、CE,将ABE绕点B顺时针旋转90到CBE的位置,若AE1,BE2,CE3则BEC_度,解析:连接EE,,由旋转性质知BEBE,EBE90,,BEE=45,,EE,

6、在EEC中,EC1,EC3,,EE,由勾股定理逆定理可知EEC90,,BECBEEEEC135.,135,例4 如图,将等腰ABC绕顶点B逆时针方向旋转度到A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F 求证:BCFBA1D;,解析:根据等腰三角形的性质得到AB=BC,A= C,由旋转的性质得到A1B=AB=BC,A1=A= C,A1BD=CBC1,根据全等三角形的判定定理得到BCFBA1D;,证明:ABC是等腰三角形, AB=BC,A=C, 由旋转的性质,可得 A1B=AB=BC,A=A1=C,A1BD= CBC1, 在BCF与BA1D中,,BCFBA1D

7、;,1.下列现象中属于旋转的有( )个 地下水位逐年下降;传送带的移动;方向盘的转动;水龙头开关的转动;钟摆的运动;荡秋千运动. A.2 B.3 C.4 D.5,2. 下列说法正确的是( ) A.旋转改变图形的形状和大小 B.平移改变图形的位置 C. 图形可以向某方向旋转一定距离 D.由平移得到的图形也一定可由旋转得到,B,C,当堂练习,3.如图,将RtABC绕点A按顺时针方向旋转一定角度得Rt ADE,点B的对应点D恰好落在BC边上.若AC= , B=60 ,则CD的长为( ) A. 0.5 B. 1.5 C. D. 1,D,4. A OB 是AOB绕点O按逆时针方向旋转得到的.已知AOB=

8、20 , A OB =24,AB=3,OA=5,则A B = ,OA = ,旋转角等于 .,3,5,44 ,5.ABC绕点A旋转一定角度后得到ADE,若BC=4,AC=3,则下列说法正确的是( ) A.DE=3 B.AE=4 C.CAB是旋转角 D.CAE是旋转角,D,6.如图(1)中,ABC和ADE都是等腰直角三角形,ACB和D都是直角,点C在AE上,ABC绕着A点经过逆时针旋转后能够与ADE重合,再将图(1)作为“基本图形”绕着A点经过逆时针旋转得到图(2).两次旋转的角度分别为( ) A.45,90 B.90,45 C.60,30 D.30,60,A,7.如图,ADE可由CAB旋转而成,

9、点B的对应点是E,点A的对应点是D,在平面直角坐标系中,三点坐标为A(1,0)、B(3,0)、C(1,4). 请找出旋转中心P的位置,并写出P的坐标.,A,B,O,C,D,E,x,y,P(3,2),8.如图所示,AB是长为4的线段,且CDAB于O.你能借助旋转的方法求出图中阴影部分的面积吗?说说你的做法.,旋转到同一个象限,构成四分之一个圆,将一个直角三角板绕30角的顶点顺时针旋转,使一直角边与原斜边在同一条直线上(如图所示).你知道旋转角是多少吗?连结BB,ABB有什么特征吗?,拓展训练,150,课堂小结,旋转,定义,三要素:旋转中心,旋转方向和旋转角度,性质,旋转前后的图形全等; 对应点到

10、旋转中心的距离相等; 对应点与旋转中心所连线段的夹角等于旋转角.,第二十三章 旋转,人教版九年级数学上册,23.1 图形的旋转,第2课时 旋转作图,1.复习旋转及旋转图形的概念及性质; 2.能够根据旋转的基本性质解决实际问题和进行简 单作图.(重点),A,B,C,D,E,F,G,H,K,L,M,N,回顾平移的特征,导入新课,O,F,A,B,C,D,E,回顾旋转的特征,画一画:如图,画出线段 AB绕点A按顺时针方向旋转60后的线段,讲授新课,作法:(1)如图,以AB为一边按顺时针方向画BAX,使得BAX=60. (2)在射线AX上取点C,使得AC=AB.线段AC为所求,X,C,视频:旋转作图演示

11、,画出下图所示的四边形 ABCD 以 O为中心, 旋转角都为 60的旋转图形,试一试,B,A,C,D,拓展提升,相同:都是一种运动;运动前后不改变图形的形状和大小.,B,A,C,O,不同,平移和旋转的异同:,例1 如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把ADE顺时针旋转90,画出旋转后的图形.,作图关键关键是确定点E的对应点E,想一想:本题中作图的关键是什么?,解:点A是旋转中心,它的 对应点是 .正方 形ABCD中,AD=AB,DAB= ,所以旋转后 重合. 设点E的对应点为E. ADE ABE ABE , BE , 因此 .,E ,点A,90 ,ADE,90 ,DE,在

12、CB的延长线上截取点E,使BE =DE,则ABE为旋转后的图形.,答:延长CB,以点A为圆心,AE 的长为半径画弧,交CB的延长线于E,连接AE,则ABE为旋转后的图形.,想一想: 还有其他方法确定点E的对应点E吗?,(1)明确旋转三要素: 旋转中心、旋转方向和旋转角度.,旋转作图的基本步骤:,(2)找出关键点;,(3)作出关键点的对应点;,(4)作出新图形;,(5)写出结论.,D,E,B,F,C,A,考考你:,借助上图,如何确定它们的旋转中心位置?,答:找到两条对应点连线段的垂直平分线的交点.,练一练:下图为 44 的正方形网格,每个小正方形的边长均为 1,将 OAB 绕点 O 逆时针旋转

13、90, 你能画出OAB 旋转后的图形 OAB吗?,A,B,例2. 怎样将甲图案变成乙图案?,甲,甲,乙,乙,A,B,B,A,可以先将甲图案绕图上的A点旋转,使得图案被“扶直”,然后,再沿AB方向将所得图案平移到B点位置,即可得到乙图案,还可以用什么方法把甲图案变成乙图案?,下图由四部分组成,每部分都包括两个小“十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?,平移:,平移的方向,平移的距离,仅靠平移无法得到,旋转:,下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗

14、?,整个图形可以看作是左边的两个小“十字”绕着图案的中心旋转3次,分别旋转90、180、270前后图形组成的.,平移、 旋转相结合:,先平移,后旋转,下图由四部分组成,每部分都包括两个小“十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?,整个图形可以看作是左边的两个小“十字”先通过一次平移成图形右侧的部分,然后左、右部分一起绕图形的中心旋转90前后图形组成的.,轴对称:,下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?,直线EF与GH相交于图形的中心O,且互相垂

15、直,先把左边的两个“十字”作关于EF的轴对称图形,然后作这两部分关于GH的轴对称图形,这样就可以得到整个图形.,O,对称轴?,如图,怎样将右边的图案变成左边的图案?,答:以右边图案的中心为旋转中心,将图案按逆时针方向旋转90,然后平移,即可得到左边的图案.,1.选择不同的_、不同的_旋转同一个图案,会出现不同的效果. (1)两个旋转中,旋转中心不变, _ 改变了,产生了_的旋转效果.,(2)两个旋转中,旋转角不变,_改变了, 产生了_的旋转效果.,旋转中心,旋转角,旋转角,不同,旋转中心,不同,2.我们可以借助旋转可以设计出许多美丽的图案.,1.如图,四边形ABCD绕O点旋转后,顶点A的对应点为E,试确定B、C、D对应的点的位置,以及旋转后的四边形,当堂练习,解:(1)连接OA、OB、OC、OD、OE;,(2)分别以OB、OC、OD为一边作BOF, COG, DOH,使BOF= COG= DOH= AOE;,(3)分别在射线OF,OG,OH上,截取OF=OB,OG=OC,OH=OD;,(4)连

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 幼儿/小学教育 > 小学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号