全国1高考理科数学(2020年8月).doc

上传人:xiang****la438 文档编号:141014199 上传时间:2020-08-03 格式:DOC 页数:24 大小:675KB
返回 下载 相关 举报
全国1高考理科数学(2020年8月).doc_第1页
第1页 / 共24页
全国1高考理科数学(2020年8月).doc_第2页
第2页 / 共24页
全国1高考理科数学(2020年8月).doc_第3页
第3页 / 共24页
全国1高考理科数学(2020年8月).doc_第4页
第4页 / 共24页
全国1高考理科数学(2020年8月).doc_第5页
第5页 / 共24页
点击查看更多>>
资源描述

《全国1高考理科数学(2020年8月).doc》由会员分享,可在线阅读,更多相关《全国1高考理科数学(2020年8月).doc(24页珍藏版)》请在金锄头文库上搜索。

1、一 寸 光 阴 不 可 轻绝密启用前XXXX全国1理科数学试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx题号一二三总分得分注意事项:1答题前填写好自己的姓名、班级、考号等信息2请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1已知集合A=x|x1000的最小偶数n,那么在和两个空白框中,可以分别填入A. A1 000和n=n+1B. A1 000和n=n+2C. A1 000和n=n+1D. A1 000和n=n+2【答案】D【解析】由题意,因为,且框图中在“否”时输出,所以判定框内不能输入,故填,又要求为偶数且初始值为0,所以矩形框内

2、填,故选D.点睛:解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.9已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D. 把

3、C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【答案】D【解析】因为函数名不同,所以先将利用诱导公式转化成与相同的函数名,则,则由上各点的横坐标缩短到原来的倍变为,再将曲线向左平移个单位长度得到,故选D.点睛:对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量而言.10已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|

4、AB|+|DE|的最小值为A. 16 B. 14 C. 12 D. 10【答案】A【解析】设,直线的方程为,联立方程,得, ,同理直线与抛物线的交点满足,由抛物线定义可知,当且仅当(或)时,取等号.点睛:对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为,则,则,所以.11设xyz为正数,且,则A. 2x3y5z B. 5z2x3y C. 3y5z2x D. 3y2x100且该数列的前N项和为2的

5、整数幂.那么该款软件的激活码是A. 440 B. 330 C. 220 D. 110【答案】A【解析】由题意得,数列如下:则该数列的前项和为,要使,有,此时,所以是第组等比数列的部分和,设,所以,则,此时,所以对应满足条件的最小整数,故选A.点睛:本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题13已知向量a,b的夹角为60

6、,|a|=2,|b|=1,则| a +2 b |= _ .【答案】【解析】,所以.点睛:平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.14设x,y满足约束条件,则的最小值为_ .【答案】-5【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得目标函数在点处取得最小值 .15已知双曲线C: (a0,b0)的右顶点为A,以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点。若MAN=60,则C的离心率为_。【

7、答案】【解析】如图所示,作,因为圆A与双曲线C的一条渐近线交于M、N两点,则为双曲线的渐近线上的点,且, ,而,所以,点到直线的距离,在中, ,代入计算得,即,由得,所以.点睛:双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:求解渐近线,直接把双曲线后面的1换成0即可;双曲线的焦点到渐近线的距离是;双曲线的顶点到渐近线的距离是.16如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O。D、E、F为圆O上的点,DBC,ECA,FAB分别是以BC,CA,AB为底边的等腰三角形。沿虚线剪开后,分别以BC,CA,AB为折痕折起DB

8、C,ECA,FAB,使得D、E、F重合,得到三棱锥。当ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_。【答案】【解析】如下图,连接DO交BC于点G,设D,E,F重合于S点,正三角形的边长为x(x0),则 . , ,三棱锥的体积 .设,x0,则,令,即,得,易知在处取得最大值.点睛:对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.评卷人得分三、解答题17ABC的内角A,B,C的对边分别为a,b,c,已知ABC的面积为 (1)

9、求sinBsinC;(2)若6cosBcosC=1,a=3,求ABC的周长.【答案】(1).(2).【解析】试题分析:(1)由三角形面积公式建立等式,再利用正弦定理将边化成角,从而得出的值;(2)由和计算出,从而求出角,根据题设和余弦定理可以求出和的值,从而求出的周长为.试题解析:(1)由题设得,即.由正弦定理得.故.(2)由题设及(1)得,即.所以,故.由题设得,即.由余弦定理得,即,得.故的周长为.点睛:在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.18如图,在四棱锥P-ABCD中

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 总结/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号