{通信公司管理}光纤通信通信用光器件

上传人:卓****库 文档编号:140928554 上传时间:2020-08-02 格式:PPTX 页数:121 大小:1.92MB
返回 下载 相关 举报
{通信公司管理}光纤通信通信用光器件_第1页
第1页 / 共121页
{通信公司管理}光纤通信通信用光器件_第2页
第2页 / 共121页
{通信公司管理}光纤通信通信用光器件_第3页
第3页 / 共121页
{通信公司管理}光纤通信通信用光器件_第4页
第4页 / 共121页
{通信公司管理}光纤通信通信用光器件_第5页
第5页 / 共121页
点击查看更多>>
资源描述

《{通信公司管理}光纤通信通信用光器件》由会员分享,可在线阅读,更多相关《{通信公司管理}光纤通信通信用光器件(121页珍藏版)》请在金锄头文库上搜索。

1、第 3 章 通信用光器 3.1 光源 3.2 光检测器 3.3 光无源器件,返回主目录,第 3 章 通信用光器件,通信用光器件可以分为有源器件和无源器件两种类型。 有源器件包括光源、光检测器和光放大器,这些器件是光发射机、 光接收机和光中继器的关键器件,和光纤一起决定着基本光纤传输系统的水平。光无源器件主要有连接器、耦合器、波分复用器、调制器、光开关和隔离器等,这些器件对光纤通信系统的构成、功能的扩展和性能的提高都是不可缺少的。 本章介绍通信用光器件的工作原理和主要特性, 为系统的设计提供选择依据。,3.1光源,光源是光发射机的关键器件,其功能是把电信号转换为光信号。目前光纤通信广泛使用的光源

2、主要有半导体激光二极管或称激光器(LD)和发光二极管或称发光管(LED), 有些场合也使用固体激光器,例如掺钕钇铝石榴石(Nd:YAG)激光器。 本节首先介绍半导体激光器(LD)的工作原理、基本结构和主要特性,然后进一步介绍性能更优良的分布反馈激光器(DFB - LD),最后介绍可靠性高、寿命长和价格便宜的发光管(LED)。 ,3.1.1半导体激光器工作原理和基本结构 半导体激光器是向半导体PN结注入电流, 实现粒子数反转分布,产生受激辐射,再利用谐振腔的正反馈,实现光放大而产生激光振荡的。激光,其英文LASER就是Light Amplification by Stimulated Emiss

3、ion of Radiation(受激辐射的光放大)的缩写。所以讨论激光器工作原理要从受激辐射开始。 1. 受激辐射和粒子数反转分布 有源器件的物理基础是光和物质相互作用的效应。在物质的原子中,存在许多能级,最低能级E1称为基态,能量比基态大的能级Ei(i=2, 3, 4 )称为激发态。电子在低能级E1的基态和高能级E2的激发态之间的跃迁有三种基本方式(见图3.1): ,图 3.1能级和电子跃迁 (a) 受激吸收; (b) 自发辐射; (c) 受激辐射,(1) 在正常状态下,电子处于低能级E1,在入射光作用下,它会吸收光子的能量跃迁到高能级E2上,这种跃迁称为受激吸收。电子跃迁后,在低能级留下

4、相同数目的空穴,见图3.1(a)。 (2) 在高能级E2的电子是不稳定的,即使没有外界的作用, 也会自动地跃迁到低能级E1上与空穴复合,释放的能量转换为光子辐射出去,这种跃迁称为自发辐射,见图3.1(b)。 (3) 在高能级E2的电子,受到入射光的作用,被迫跃迁到低能级E1上与空穴复合,释放的能量产生光辐射,这种跃迁称为受激辐射,见图3.1(c)。 ,受激辐射是受激吸收的逆过程。 电子在E1和E2两个能级之间跃迁,吸收的光子能量或辐射的光子能量都要满足波尔条件,即 E2-E1=hf12 (3.1) 式中,h=6.62810-34Js,为普朗克常数,f12为吸收或辐射的光子频率。 受激辐射和自发

5、辐射产生的光的特点很不相同。受激辐射光的频率、相位、偏振态和传播方向与入射光相同,这种光称为相干光。自发辐射光是由大量不同激发态的电子自发跃迁产生的,其频率和方向分布在一定范围内,相位和偏振态是混乱的,这种光称为非相干光。 ,产生受激辐射和产生受激吸收的物质是不同的。 设在单位物质中,处于低能级E1和处于高能级E2(E2E1)的原子数分别为N1和N2。当系统处于热平衡状态时,存在下面的分布 式中, k=1.38110-23J/K,为波尔兹曼常数,T为热力学温度。由于(E2-E1)0,T0,所以在这种状态下,总是N1N2。 这是因为电子总是首先占据低能量的轨道。受激吸收和受激辐射的速率分别比例于

6、N1和N2,且比例系数(吸收和辐射的概率)相等。如果N1N2,即受激吸收大于受激辐射。当光通过这种物质时,光强按指数衰减, 这种物质称为吸收物质。,如果N2N1,即受激辐射大于受激吸收,当光通过这种物质时,会产生放大作用,这种物质称为激活物质。N2N1的分布,和正常状态(N1N2)的分布相反,所以称为粒子(电子)数反转分布。问题是如何得到粒子数反转分布的状态呢? 这个问题将在下面加以叙述。 2. PN结的能带和电子分布 半导体是由大量原子周期性有序排列构成的共价晶体。 在这种晶体中,由于邻近原子的作用,电子所处的能态扩展成能级连续分布的能带,如图3.2。能量低的能带称为价带,能量高的能带称为导

7、带,导带底的能量Ec和价带顶的能量Ev之间的能量差Ec-Ev=Eg称为禁带宽度或带隙。电子不可能占据禁带。,图 3.2半导体的能带和电子分布 (a) 本征半导体; (b) N型半导体; (c) P型半导体,图3.2示出不同半导体的能带和电子分布图。根据量子统计理论,在热平衡状态下,能量为E的能级被电子占据的概率为费米分布,式中,k为波兹曼常数,T为热力学温度。当T0时, P(E)0, 这时导带上几乎没有电子,价带上填满电子。Ef称为费米能级,用来描述半导体中各能级被电子占据的状态。 在费米能级,被电子占据和空穴占据的概率相同。 ,图 3.3PN结的能带和电子分布 (a) P - N结内载流子运

8、动;(b) 零偏压时P - N结的能带图; (c) 正向偏压下P - N结能带图,一般状态下,本征半导体的电子和空穴是成对出现的, 用Ef位于禁带中央来表示,见图3.2(a)。在本征半导体中掺入施主杂质,称为N型半导体。在N型半导体中,Ef增大,导带的电子增多, 价带的空穴相对减少,见图3.2(b)。在本征半导体中,掺入受主杂质,称为P型半导体。在P型半导体中,Ef减小,导带的电子减少,价带的空穴相对增多,见图3.3(c)。 在P型和N型半导体组成的PN结界面上, 由于存在多数载流子(电子或空穴)的梯度,因而产生扩散运动,形成内部电场, 见图3.3(a)。内部电场产生与扩散相反方向的漂移运动,

9、直到P区和N区的Ef相同,两种运动处于平衡状态为止,结果能带发生倾斜,见图3.3(b)。这时在PN结上施加正向电压,产生与内部电场相反方向的外加电场,结果能带倾斜减小,扩散增强。,电子运动方向与电场方向相反,便使N区的电子向P区运动,P区的空穴向N区运动,最后在PN结形成一个特殊的增益区。增益区的导带主要是电子,价带主要是空穴,结果获得粒子数反转分布,见图3.3(c)。在电子和空穴扩散过程中,导带的电子可以跃迁到价带和空穴复合,产生自发辐射光。 3. 激光振荡和光学谐振腔 粒子数反转分布是产生受激辐射的必要条件,但还不能产生激光。只有把激活物质置于光学谐振腔中,对光的频率和方向进行选择,才能获

10、得连续的光放大和激光振荡输出。,基本的光学谐振腔由两个反射率分别为R1和R2的平行反射镜构成(如图3.4所示),并被称为法布里 - 珀罗(FabryPerot, FP)谐振腔。由于谐振腔内的激活物质具有粒子数反转分布,可以用它产生的自发辐射光作为入射光。入射光经反射镜反射,沿轴线方向传播的光被放大,沿非轴线方向的光被减弱。反射光经多次反馈,不断得到放大,方向性得到不断改善,结果增益大幅度得到提高。 另一方面,由于谐振腔内激活物质存在吸收, 反射镜存在透射和散射,因此光受到一定损耗。当增益和损耗相当时, 在谐振腔内开始建立稳定的激光振荡, 其阈值条件为,图 3.4激光器的构成和工作原理 (a)

11、激光振荡; (b) 光反馈, th=+,式中,th为阈值增益系数,为谐振腔内激活物质的损耗系数,L为谐振腔的长度,R1,R21为两个反射镜的反射率激光振荡的相位条件为,L=q,式中,为激光波长,n为激活物质的折射率,q=1, 2, 3 称为纵模模数。 4. 半导体激光器基本结构,半导体激光器的结构多种多样,基本结构是图3.5示出的双异质结(DH)平面条形结构。这种结构由三层不同类型半导体材料构成,不同材料发射不同的光波长。图中标出所用材料和近似尺寸。结构中间有一层厚0.10.3 m的窄带隙P型半导体,称为有源层;两侧分别为宽带隙的P型和N型半导体, 称为限制层。三层半导体置于基片(衬底)上,前

12、后两个晶体解理面作为反射镜构成法布里 - 珀罗(FP)谐振腔。 图3.6示出DH激光器工作原理。由于限制层的带隙比有源层宽,施加正向偏压后, P层的空穴和N层的电子注入有源层。 P层带隙宽, 导带的能态比有源层高,对注入电子形成了势垒, 注入到有源层的电子不可能扩散到P层。同理,注入到有源层的空穴也不可能扩散到N层。 ,图 3.6DH激光器工作原理 (a) 短波长; (b) 长波长 (a) 双异质结构; (b) 能带; (c) 折射率分布; (d) 光功率分布,P层带隙宽,导带的能态比有源层高,对注入电子形成了势垒,注入到有源层的电子不可能扩散到P层。 同理, 注入到有源层的空穴也不可能扩散到

13、N层。这样,注入到有源层的电子和空穴被限制在厚0.10.3 m的有源层内形成粒子数反转分布,这时只要很小的外加电流,就可以使电子和空穴浓度增大而提高效益。另一方面,有源层的折射率比限制层高,产生的激光被限制在有源区内,因而电/光转换效率很高,输出激光的阈值电流很低,很小的散热体就可以在室温连续工作。 ,3.1.2半导体激光器的主要特性 1. 发射波长和光谱特性 半导体激光器的发射波长取决于导带的电子跃迁到价带时所释放的能量,这个能量近似等于禁带宽度Eg(eV),由式(3.1)得到 hf=Eg 式中,f=c/,f(Hz)和(m)分别为发射光的频率和波长, c=3108 m/s为光速,h=6.62

14、810-34JS为普朗克常数,1 eV=1.610-19 J,代入上式得到,不同半导体材料有不同的禁带宽度Eg,因而有不同的发射波长。镓铝砷 -镓砷(GaAlAsGaAs)材料适用于0.85 m波段,铟镓砷磷 - 铟磷(InGaAsPInP)材料适用于1.31.55 m波段。参看图3.5(b)。 图3.7是GaAlAsDH激光器的光谱特性。在直流驱动下, 发射光波长有一定分布,谱线具有明显的模式结构。这种结构的产生是因为导带和价带都是由许多连续能级组成的有一定宽度的能带,两个能带中不同能级之间电子的跃迁会产生连续波长的辐射光。,其中只有符合激光振荡的相位条件式(3.5)的波长存在。 这些波长取

15、决于激光器纵向长度L,并称为激光器的纵模。 由图3.7(a)可见,随着驱动电流的增加,纵模模数逐渐减少, 谱线宽度变窄。这种变化是由于谐振腔对光波频率和方向的选择,使边模消失、主模增益增加而产生的。当驱动电流足够大时,多纵模变为单纵模,这种激光器称为静态单纵模激光器。 图3.7(b)是300 Mb/s数字调制的光谱特性, 由图可见,随着调制电流增大,纵模模数增多,谱线宽度变宽。用FP谐振腔可以得到的是直流驱动的静态单纵模激光器,要得到高速数字调制的动态单纵模激光器,必须改变激光器的结构,例如采用分布反馈激光器就可达到目的。 ,图 3.7GaAlAsDH激光器的光谱特性 (a) 直流驱动; (b

16、) 300 Mb/s数字调制,2. 激光束的空间分布 激光束的空间分布用近场和远场来描述。近场是指激光器输出反射镜面上的光强分布,远场是指离反射镜面一定距离处的光强分布。图3.8是GaAlAsDH激光器的近场图和远场图, 近场和远场是由谐振腔(有源区)的横向尺寸,即平行于PN结平面的宽度w和垂直于结平面的厚度t所决定,并称为激光器的横模。由图3.8可以看出, 平行于结平面的谐振腔宽度w由宽变窄, 场图呈现出由多横模变为单横模;垂直于结平面的谐振腔厚度t很薄,这个方向的场图总是单横模。,图 3.8 GaAlAsDH条形激光器的近场图,3.9典型半导体激光器的远场辐射特性和远场图样 (a) 光强的角分布; (b) 辐射光束,图3.9为典型半导体激光器的远场辐射特性,图中和分别为平行于结平面和垂直于结平面的辐射角,整个光束的横截面呈椭

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 企业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号