{交通运输管理}跨膜运输

上传人:卓****库 文档编号:140717972 上传时间:2020-07-31 格式:PPTX 页数:27 大小:445.90KB
返回 下载 相关 举报
{交通运输管理}跨膜运输_第1页
第1页 / 共27页
{交通运输管理}跨膜运输_第2页
第2页 / 共27页
{交通运输管理}跨膜运输_第3页
第3页 / 共27页
{交通运输管理}跨膜运输_第4页
第4页 / 共27页
{交通运输管理}跨膜运输_第5页
第5页 / 共27页
点击查看更多>>
资源描述

《{交通运输管理}跨膜运输》由会员分享,可在线阅读,更多相关《{交通运输管理}跨膜运输(27页珍藏版)》请在金锄头文库上搜索。

1、跨膜运输,MEMBRANE TRANSPORT,内容提要,第一节、被动运输 一、简单扩散 二、协助扩散 第二节 主动运输 一、钠钾泵 二、钙离子泵 三、质子泵,四、ABC 转运器 五、协同运输 第三节、膜泡运输的基本概念 一、吞噬作用 二、胞饮作用 三、外排作用 四、穿胞运输 五、胞内膜泡运输,据估计细胞膜上与物质转运有关的蛋白占核基因编码蛋白的1530%,细胞用在物质转运方面的能量达细胞总消耗能量的2/3。 细胞膜上存在两类主要的转运蛋白,即:载体蛋白(carrier protein)和通道蛋白(channel protein)。 载体蛋白又称做载体(carrier)、通透酶(permeas

2、e)和转运器(transporter),有的需要能量驱动,如:各类APT驱动的离子泵;有的则不需要能量,如:缬氨酶素。 通道蛋白能形成亲水的通道,允许特定的溶质通过,所有通道蛋白均以自由扩散的方式运输溶质。,第一节 被动运输,一、简单扩散,也叫自由扩散(free diffusion)特点: 沿浓度梯度(或电化学梯度)扩散; 不需要提供能量; 没有膜蛋白的协助。 某种物质对膜的通透性(P)可以根据它在油和水中的分配系数(K)及其扩散系数(D)来计算: P=KD/t t为膜的厚度。,人工膜对各类物质的通透率: 脂溶性越高通透性越大,水溶性越高通透性越小; 非极性分子比极性容易透过,极性不带电荷小分

3、子,如H2O、O2等可以透过人工脂双层,但速度较慢; 小分子比大分子容易透过;分子量略大一点的葡萄糖、蔗糖则很难透过; 人工膜对带电荷的物质,如各类离子是高度不通透的。,二、协助扩散,也称促进扩散(facilitated diffusion)。 特点: 比自由扩散转运速率高; 运输速率同物质浓度成非线性关系; 特异性;饱和性。 载体:离子载体和通道蛋白两种类型。,(一)离子载体(ionophore),是疏水性的小分子,可溶于双脂层,多为微生物合成,是微生物防御或与其它物种竞争的武器。 分为两类: 可动离子载体(mobile ion carrier) :如缬氨霉素(valinomycin)是一种

4、由三个重复部分构成的环形分子,能顺浓度梯度转运K+。 DNP和FCCP可转运H+。 通道离子载体(channel former):如短杆菌肽A(granmicidin),是由15个疏水氨基酸构成的短肽,2分子形成一个跨膜通道,有选择的使单价阳离子如H+、Na+、K+按化学梯度通过膜。,(二)通道蛋白(channel protein),是跨膜的亲水性通道,允许适当大小的离子顺浓度梯度通过,故又称离子通道。 有些通道蛋白长期开放,如钾泄漏通道; 有些通道蛋白平时处于关闭状态,仅在特定刺激下才打开,又称为门通道(gated channel)。主要有4类:电位门通道、配体门通道、环核苷酸门通道、机械门

5、通道。,1、配体门通道(ligand gated channel),特点:受体与细胞外的配体结合,引起门通道蛋白发生构象变化, “门”打开。又称离子通道型受体。 可分为阳离子通道,如乙酰胆碱、谷氨酸和五羟色胺受体,和阴离子通道,如甘氨酸和氨基丁酸受体。 Ach受体是由4种不同的亚单位组成的5聚体蛋白质,形成一个结构为2的梅花状通道样结构,其中的两个亚单位是同两分子Ach相结合的部位。,2、电位门通道(voltage gated channel),特点:细胞内或细胞外特异离子浓度或电位发生变化时,致使其构象变化,“门”打开。 K+电位门有四个亚单位,每个亚基有6个跨膜螺旋(S1-S6) ,N和C

6、端均位于胞质面。连接S5-S6段的发夹样折叠 (P区或H5区),构成通道的内衬,大小可允许K+通过。 K+通道具有三种状态:开启、关闭和失活。目前认为S4段是电压感受器。 Na+、K+、Ca2+三种电压门通道结构相似,在进化上是由同一个远祖基因演化而来。,3、环核苷酸门通道,CNG通道与电压门钾通道结构相似,也有6个跨膜片段。细胞内的C末端较长,上面有环核苷酸的结合位点。 CNG通道分布于化学感受器和光感受器中,与膜外信号的转换有关。 如气味分子与化学感受器中的G蛋白偶联型受体结合,可激活腺苷酸环化酶,产生cAMP,开启cAMP门控阳离子通道(cAMP-gated cation channel

7、),引起钠离子内流,膜去极化,产生神经冲动,最终形成嗅觉或味觉。,4、机械门通道,感受摩擦力、压力、牵拉力、重力、剪切力等。细胞将机械刺激的信号转化为电化学信号,引起细胞反应的过程称为机械信号转导(mechanotransduction )。 目前比较明确的有两类机械门通道,其一是牵拉活化或失活的离子通道,另一类是剪切力敏感的离子通道,前者几乎存在于所有的细胞膜(如:血管内皮细胞、心肌细胞、内耳毛细胞),后者仅发现于内皮细胞和心肌细胞。 牵拉敏感的离子通道的特点:对离子的无选择性、无方向性、非线性以及无潜伏期。为2价或1价的阳离子通道,有Na+、K+、Ca2+,以Ca2+为主。,5、水通道,水

8、扩散通过人工膜的速率很低,人们推测膜上有水通道。 1991年Agre发现第一个水通道蛋白CHIP28 (28 KD ),他将CHIP28的mRNA注入非洲爪蟾的卵母细胞中,在低渗溶液中,卵母细胞迅速膨胀,5 分钟内破裂。细胞的这种吸水膨胀现象会被Hg2+抑制。 2003年Agre与离子通道的研究者MacKinnon同获诺贝尔化学奖。 目前在人类细胞中已发现的此类蛋白至少有11种,被命名为水通道蛋白(Aquaporin,AQP)。,第二节、主动运输,主动运输的特点是: 逆浓度梯度(逆化学梯度)运输; 需要能量; 都有载体蛋白。 主动运输所需的能量来源主要有: 协同运输中的离子梯度动力; ATP驱

9、动的泵通过水解ATP获得能量; 光驱动的泵利用光能运输物质,见于细菌。,一、钠钾泵,构成:由2个大亚基、2个小亚基组成的4聚体,实际上就是Na+-K+ATP酶,分布于动物细胞的质膜。 工作原理: Na+-K+ATP酶通过磷酸化和去磷酸化过程发生构象的变化,导致与Na+、K+的亲和力发生变化。在膜内侧Na+与酶结合,激活ATP酶活性,使ATP分解,酶被磷酸化,构象发生变化,于是与Na+结合的部位转向膜外侧;这种磷酸化的酶对Na+的亲和力低,对K+的亲和力高,因而在膜外侧释放Na+、而与K+结合。K+与磷酸化酶结合后促使酶去磷酸化,酶的构象恢复原状,于是与K+结合的部位转向膜内侧,K+与酶的亲和力

10、降低,使K+在膜内被释放,而又与Na+结合。其总的结果是每一循环消耗一个ATP;转运出三个Na+,转进两个K+。,钠钾泵对离子的转运循环依赖自磷酸化过程(ATP上的一个磷酸基团转移到钠钾泵的一个天冬氨酸残基上,导致构象变化),所以这类离子泵叫做P-type。 Na+-K+泵的作用: 维持细胞的渗透性,保持细胞的体积; 维持低Na+高K+的细胞内环境; 维持细胞的静息电位。 地高辛、乌本苷等强心剂抑制其活性;Mg2+和少量膜脂有助提高于其活性。,二、钙离子泵,作用:维持细胞内较低的钙离子浓度(细胞内钙离子浓度10-7M,细胞外10-3M)。 位置:质膜和内质网膜。 类型: P型离子泵,其原理与钠

11、钾泵相似,每分解一个ATP分子,泵出2个Ca2+。位于肌质网上的钙离子泵占肌质网膜蛋白质的90%。 钠钙交换器(Na+-Ca2+ exchanger),属于反向协同运输体系,通过钠钙交换来转运钙离子。,1、P-type:利用ATP自磷酸化发生构象的改变来转移质子,如植物细胞膜上的H+泵、动物胃表皮细胞的H+-K+泵(分泌胃酸)。 2、V-type:存在于各类小泡(vacuole) 膜上,由许多亚基构成,水解ATP产生能量,但不发生自磷酸化,位于溶酶体膜、内体、植物液泡膜上。 3、F-type:是由许多亚基构成的管状结构,利用质子动力势合成ATP,也叫ATP合酶,位于细菌质膜,线粒体内膜和叶绿体

12、的类囊体膜上。,三、质子泵,四、ABC 转运器,ABC转运器(ABC transporter)最早发现于细菌,属于一个庞大的蛋白家族,每个成员都有两个高度保守的ATP结合区(ATP binding cassette),故名ABC转运器。 每一种ABC转运器只转运一种或一类底物,不同的转运器可转运离子、氨基酸、核苷酸、多糖、多肽、甚至蛋白质。ABC转运器还可催化脂双层的脂类在两层之间翻转,在膜的发生和功能维护上具有重要的意义。,五、协同运输cotransport,是一类靠间接提供能量完成的主动运输方式。 物质跨膜运动所需要的能量来自膜两侧离子的电化学浓度梯度,而维持这种电化学势的是钠钾泵或质子泵

13、。 动物细胞中常常利用膜两侧Na+浓度梯度来驱动。 植物细胞和细菌常利用H+浓度梯度来驱动。 根据物质运输方向与离子沿浓度梯度的转移方向,协同运输又可分为:同向协同(symport)与反向协同(antiport)。,1、同向协同(symport) 物质运输方向与离子转移方向相同。如小肠细胞对葡萄糖的吸收伴随着Na+的进入。在某些细菌中,乳糖的吸收伴随着H+的进入。 2、反向协同(antiport) 物质跨膜运动的方向与离子转移的方向相反,如动物细胞常通过Na+/H+反向协同运输的方式来转运H+,以调节细胞内的PH值。还有一种机制是Na+驱动的Cl-HCO3-交换,即Na+与HCO3-的进入伴随

14、着Cl-和H+的外流,如存在于红细胞膜上的带3蛋白。,第三节、膜泡运输的基本概念,真核细胞通过内吞作用(endocytosis)和外排作用(exocytosis)完成大分子与颗粒性物质的跨膜运输。在转运过程中,质膜内陷,形成包围细胞外物质的囊泡,因此又称膜泡运输。细胞的内吞和外排活动总称为吞排作用(cytosis)。,细胞内吞较大的固体颗粒物质,如细菌、细胞碎片等,称为吞噬作用。,一、吞噬作用,细胞吞入液体或极小的颗粒物质。,二、胞饮作用,三、外排作用,exocytosis,包含大分子物质的小囊泡从细胞内部移至细胞表面,与质膜融,将物质排出细胞之外。,四、穿胞运输 在细胞的一侧形成胞饮小泡穿越细胞质,另一侧使小泡中的物质释放出去。如: 肝细胞从血窦中吸收免疫球蛋白A(IgA),通过穿胞运输输送到胆微管; 大鼠中,母鼠血液中的抗体经穿胞运输进入乳汁。 五、胞内膜泡运输 细胞内膜系统各个部分之间的物质传递也通过膜泡运输方式进行。如从内质网到高尔基体;高尔基体到溶酶体等。,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 企业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号