(2020年)企业管理空气动力学在汽车设计中的应用

上传人:精****库 文档编号:139708735 上传时间:2020-07-23 格式:DOCX 页数:15 大小:1.19MB
返回 下载 相关 举报
(2020年)企业管理空气动力学在汽车设计中的应用_第1页
第1页 / 共15页
(2020年)企业管理空气动力学在汽车设计中的应用_第2页
第2页 / 共15页
(2020年)企业管理空气动力学在汽车设计中的应用_第3页
第3页 / 共15页
(2020年)企业管理空气动力学在汽车设计中的应用_第4页
第4页 / 共15页
(2020年)企业管理空气动力学在汽车设计中的应用_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《(2020年)企业管理空气动力学在汽车设计中的应用》由会员分享,可在线阅读,更多相关《(2020年)企业管理空气动力学在汽车设计中的应用(15页珍藏版)》请在金锄头文库上搜索。

1、空气动力学汽车作为一种商品,首先向人们展示的就是它的外形,外形是否讨人喜欢直接关系到这款车子甚至汽车厂商的命运。 汽车的外形设计,专业的说法叫做汽车造型设计,是根据汽车整体设计的多方面要求来塑造最理想的车身形状。汽车造型设计是汽车外部和车厢内部造型设计的总 和。它不是对汽车的简单装饰,而是运用艺术的手法、科学地表现汽车的功能、材料、工艺和结构特点。 汽车造型的目的是以美去吸引和打动观者,使其产生拥有这种车的欲望。汽车造型设计虽然是车身设计的最初步骤,是整车设计最初阶段的一项综合构思,但却是决 定产品命运的关键。汽车的造型已成为汽车产品竞争最有力的手段之一。 汽车造型主要涉及科学和艺术两大方面。

2、设计师需要懂得车身结构、制造工艺要求、空气动力学、人机工程学、工程材料学、机械制图学、声学和光学知识。同时, 设计师更需要有高雅的艺术品味和丰富的艺术知识,如造型的视觉规律原理、绘画、雕塑、图案学、色彩学等等。二战以后现代主义提倡的民主制度,强调每个人都必须平等。但人与人之间始终存在着许多不同。我们必须承认,所谓清一色的平等只能够创造出一种假象,而并不是真正满足了每个人的需要。所以,今后的汽车造型设计将更多注重个体性与差异性。技术的进步为设计师提供了强有力的技术支持,让他们有能力做出更灵活、更多样化的设计满足 消费者的需求,旧有的规格化和标准化将被推翻。目前部分技术实力高超的小型汽车厂商已经开

3、始提供个人定制汽车服务,但要价不菲,2007年曾有美国富商向 宾西法尼亚订购了一辆价值300万美元的跑车。消费者参与原始时期,人类使用的器物都是自己制作,并从制作过程中得到满足与成就感,这是人类的本能之一。大工业生产包办了一切制作过程,人得到的只有最后的成品。新的世纪里,这种本能将会被重新提倡。既成品的概念已经成为过去。在不完全否定工业大生产的前提下,现代产业体制将会做出灵活的调整。今后的汽车会像今天我们所能见的电脑产品一样, 不再以最终完成品的状态出厂,而是有各种性能升级的空间。汽车产品的使用环境不再固定,而是成了互动的使用环境。汽车的保有量不断增加,而相应配套的市政设施、停车场空间等却与发

4、展不相称,这势必要求汽车整车外形尺寸要越小越好,但又不能对乘坐舒适性产生 不利的影响,我们可以从五种途径来增大空间利用率:减少发动机所占空间,驾驶室前移;加长轴距,减少前后悬的长度;行李箱向车尾部后移或向车顶部上移;从 三厢式向单厢式发展;改变车门开启方式。为了减少发动机所占空间,需要对底盘和整车总体布置进行充分地研究,以便利用有效空间和增加使用空间的可变性,通常前挡风玻璃总是尽量往前移, 形成子弹头形状。轴距加长是在车身总长不变的前提下,可以减少前后悬的突出部分,使后排座位的人上下车更加方便,增加乘坐舒适性。行李箱设计尽量向后移或 向上移是为了增大乘坐空间,充分利用车顶部的空间。车身布置尽量

5、紧凑合理,浑然一体,使得汽车在满足舒适陛的前提下更加轻便化、流线型化。许多日系小型车 将这类设计概念发挥到了极致,比如以大空间著称的日产TIIDA。高速、安全、低耗是现代汽车发展的主题。为了适应这个潮流,汽车造型应在严格的风洞试验的基础上做好形态设计,创造楔形车身或流线型楔形车身。未来汽车降低油耗的途径将是多方面的,采用新能源是一项重要措施。能源的改变使汽车造型、内饰、色彩均与众不同。例如电动汽车,采用蓄电池和电 动系统为动力,其动力舱部分空间就要比内燃机小得多,大大增加了造型设计的灵活性。由此可见,未来车身的整体形状由于汽车动力能源的不同,将出现丰富多彩 的艺术造型。研究空气或其他气体的运动

6、规律,空气或其他气体与飞行器或其他物体发生相对运动时的相互作用和伴随发生的物理化学变化的学科。流体力学的一个分支。它是在流体力学基础上随航空航天技术的发展而形成的一门学科。 研究内容根据空气与物体的相对速度是否小于约100米秒(相应马赫数约0.3),可分为低速空气动力学和高速空气动力学。前者主要研究不可压缩流动,后者研究可压缩流动。根据是否忽略粘性,可分为理想空气动力学和粘性空气动力学。作用于飞行器的升力、力矩问题,可主要通过理想空气动力学求解。按流场边界不同,气流有外流和内流之分。外流指一般飞行器绕流和钝体绕流,内流主要指管道、进气道、发动机内的流动。专门研究钝体绕流的称钝体空气动力学;专门

7、研究内流的称内流空气动力学。自20世纪60年代以后,空气动力学逐渐向非航空航天的一般工业与经济领域扩展和渗透,形成了工业空气动力学。此外还有一些边缘性分支学科,如稀薄气体动力学、高温气体动力学和宇宙气体动力学等(见气体动力学)。流体力学的三大方程组是由质量守恒,动量守恒和能量守恒定理推导出来的,他们分别叫连续方程、动量方程和能量方程。另外加上气体状态方程和本构方程,形成了流体力学的核心内容。(具体叫法根据译本有出入)它们成立的前提是做了连续性假设、牛顿流体假设和完全气体假设。其中只做了上述三个假设的方程组最为精确,适用范围最广,被成为Navier-Stocks方程(组),但是在当时条件下,人们

8、无法对N-S方程(组)进行有效地求解,为了满足工程实践需要,人们又做了无粘假设,忽略掉了由动量定理推导出的那个方程的粘性项,这一举措对连续方程毫无影响,但能量方程中由粘性耗散引起的能量变化因此消失了。此时,N-S方程退化成了Euler方程(组),但是大大简化了CFD的计算难度,现在对Euler方程(组)的求解已非常成熟,基本能满足工程的最高精度的需要,NS方程一般只是做为理论研究或是某些特殊的情形下才需要做。随着具体的实际情况,先辈们又对EULER做了诸如不可压啊,无旋啊(使速度有势),小扰动啊等等假设,进一步把EULER方程组简化成针对具体情况的方程组或方程,比如Laplace方程,速势方程

9、,小扰动速势方程等。钝体空气动力学。研究钝形物体的绕流问题。钝体常具有钝头、钝尾或带棱角的形状,如桥梁、塔架、采油平台、大型冷却塔、高层建筑、火车、汽车等。当风吹过这些物体或物体在空气中运动时便产生钝体绕流现象。流线型飞机在大迎角飞行时,也属钝体绕流范畴。钝体绕流通常伴有复杂的分离和旋涡运动,有时还会产生流致振动(即物体或结构被流动激发的振动)。这是由于分离涡从物面周期性发放时,物体受到周期变化的流体动力作用而发生的受迫振动,甚至导致共振或变形发散,使结构破坏。1940年美国塔科马悬索桥在自然风作用下发生强烈振动而断裂就是一例。为此,在建筑设计中必须考虑结构的固有频率,还要进行风洞实验。常采取

10、的措施有减小跨度,增加刚度,改善外形等,或设置动力阻尼器。 内流空气动力学。主要研究各种管道(如喷管、扩压管等)内部空气或其他气体的流动规律及其与边界的相互作用;有时还包括管道内叶轮机(如压气机、涡轮等)中的流动问题。管道中的流动一般可按一维流动处理。中国学者吴仲华于20世纪50年代初创立了叶轮机械三元流动理论。内流空气动力学的研究方法与一般空气动力学并无明显的不同。 工业空气动力学。主要研究大气边界层(受地面摩擦阻力影响的大气层区域)内风与人类活动、社会和自然环境相互作用的规律。很多情况下,也称为风工程。主要内容包括:大气边界层内的风特性,如速度分布、湍流分布等;风对建筑物或构筑物的作用,以

11、及对果园、树林等的风害及其防治;建筑物或群体所诱致的局部风环境;风引起的质量迁移,如气态污染物的排放、扩散和弥散规律;交通车辆(如汽车、火车)的气动特性及减阻措施等;风能利用;风对社会、经济的其他影响等。主要通过现场实测和实验室模拟进行研究。为此建造了专用的大气边界层风洞和密度分层的水槽等设备。 研究方法主要有理论和实验两个方面。 理论研究遵循的一般原理是流动的基本定律,如质量守恒定律、动量守恒定律、能量守恒定律、热力学定律以及介质的物理属性和状态方程等。但在不同速度范围、流动特征,上述基本定律的表现形式(即控制方程)、求解的理论和方法有很大差异。在低速不可压缩流范围,求解的基本理论有理想无粘

12、流的基本解法、升力线和升力面理论、保角转绘理论、低速边界层理论等。在亚声速流动范围,理想无旋流方程属非线性椭圆型偏微分方程,主要求解方法有小扰动线化理论、亚声速相似律(如普朗特-格劳厄脱法则、卡门-钱学森公式等)、速度面法等。在超声速流动范围,方程属非线性双曲型偏微分方程,主要理论处理方法有小扰动线化理论、相似律、特征线法等。在跨声速流动范围,流动比较复杂,方程属非线性混合型偏微分方程,求解难度很大,主要用数值求解方法,有时也可用相似律等。在高超声速流动范围,流动中出现很多物理化学变化如烧蚀、传热传质等,而且必须考虑气体真实效应和激波-边界层干扰(物面附近的激波同边界层之间的相互影响)。 实验

13、研究是以相似理论为指导,在实验设备(主要是风洞)中模拟真实飞行而求解流动问题。计算机的应用和发展,使空气动力学有了深刻而巨大的进展。 在理论研究方面,通过数值计算直接求解基本方程,逐渐形成了计算空气动力学。在实验方面,提高了实验的自动化、高效率和高精度水平。理论研究、实验研究、数值计算3方面的紧密结合,已成为现代空气动力学的主要特征。空气动力学作为一门基础学科,对航空航天技术的发展起着重要作用,对一般工业如建筑、交通、能源、环境保护等技术的发展也起着日益显著的作用。“造型硬点”理论 P3Zoc? 一、起因: 1_-;+XP! 用绘画展现人的胖瘦,他的骨骼、筋腱就是不可变的“硬点”,加肉减肉也要

14、合理,比如肚脐眼的最深点到后腰的距离是基本不变的 Z?r,ZK 同理,汽车造型设计也有着许多有形或无形的约束,不是可以任意发挥的,除了表现功能配置和美学、文化元素外,结构、工艺以及力学特别是流体力学理论也是重要的约束条件。 9?C$/?CVDO 二、“造型硬点”理论的基本构成: 3yhscNg.: 1.多“S”线学说; 8!+qp:=R 2.主要断面学说,加强X轴、Y轴中心面及主要特征区域的段面剖面边界; MDs xKBb 3.分缝线:区分可开闭和固定的,分别给出与相对于整车的位置及宽度比例; )suXh- 4.弧线、S线:分类约定极限R值、链接过渡关系; t4LaZOy 5.渲染:光源位置、

15、角度与光影明暗、强弱差异对比; -fT vzJ 6.灯具外表面的凸起; vt*| S 7.边缘落差的显现形式; 6(d+ q(V i 8.玻璃的透光度与背景可见物; bFfV.3k 9.迎风面:忌与Y轴垂直的迎风凹面; F(.cbd 10.主体色彩与背景、地面衬托; 9*u?:d 11.一些部件的设定位置; Cvqu:m38P 12.长、宽、高、接近角、离去角、最小离地间隙等参数;设计汽车造型的空气动力学汽车空气动力学空气动力学在科学的范畴里是一门艰深的度量科学,一辆汽车在行使时,会对相对静止的空气造成不可避免的冲击,空气会因此向四周流动,而蹿入车底的气流便会被暂时困于车底的各个机械部件之中,

16、空气会被行使中的汽车拉动,所以当一辆汽车飞驰而过之后,地上的纸张和树叶会被卷起。此外,车底的气流会对车头和引擎舱内产生一股浮升力,削弱车轮对地面的下压力,影响汽车的操控表现。另外,汽车的燃料在燃烧推动机械运转时已经消耗了一大部分动力,而当汽车高速行使时,一部分动力也会被用做克服空气的阻力。所以,空气动力学对于汽车设计的意义不仅仅在于改善汽车的操控性,同时也是降低油耗的一个窍门。对付浮升力的方法对付浮升力的方法,其一可以在车底使用扰流板。不过,今天已经很少有量产型汽车使用这项装置了,其主要原因是因为研发和制造的费用实在太过高昂。在近期的量产车中只有FERRARI 360M、LOTUS ESPRIT、NISSAN SKYLINE GT-R还使用这样的装置。另一个主流的做法是在车头下方加装一个坚固而比车头略长的阻流器。它可以将气流引导至引擎盖

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 企业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号