锻造缺陷的产生机理识别及预防课件培训讲学

上传人:yulij****0329 文档编号:139240532 上传时间:2020-07-20 格式:PPT 页数:211 大小:2.69MB
返回 下载 相关 举报
锻造缺陷的产生机理识别及预防课件培训讲学_第1页
第1页 / 共211页
锻造缺陷的产生机理识别及预防课件培训讲学_第2页
第2页 / 共211页
锻造缺陷的产生机理识别及预防课件培训讲学_第3页
第3页 / 共211页
锻造缺陷的产生机理识别及预防课件培训讲学_第4页
第4页 / 共211页
锻造缺陷的产生机理识别及预防课件培训讲学_第5页
第5页 / 共211页
点击查看更多>>
资源描述

《锻造缺陷的产生机理识别及预防课件培训讲学》由会员分享,可在线阅读,更多相关《锻造缺陷的产生机理识别及预防课件培训讲学(211页珍藏版)》请在金锄头文库上搜索。

1、锻造缺陷的产生机理、识别及预防,齐齐哈尔轨道交通装备有限责任公司,一、原材料的主要缺陷及其引起的锻件缺陷 锻造用的原材料为铸锭、轧材、挤材及锻坯。而轧材、挤材及锻坯分别是铸锭经轧制、挤压及锻造加工成的半成品。一般情况下,铸锭的内部缺陷或表面缺陷的出现有时是不可避免的。例如,内部的成分与组织偏析等。原材料存在的各种缺陷,不仅会影响锻件的成形,而且将影响锻件的最终质量。 根据不完全的统计,在航空工业系统中,导致航空锻件报废的诸多原因中,由于原材料固有缺陷引起的约占一半左右。因此,千万不可忽视原材料的质量控制工作。 由于原材料的缺陷造成的锻件缺陷通常有: 1.表面裂纹2.折叠3.结疤 4.层状断口5

2、.亮线(亮区)6.非金属夹杂 7.碳化物偏析8.铝合金氧化膜9.白点10.粗晶环11.缩管残余,1.表面裂纹 表面裂纹多发生在轧制棒材和锻制棒材上,一般呈直线形状,和轧制或锻造的主变形方向一致。造成这种缺陷的原因很多,例如钢锭内的皮下气泡在轧制时一面沿变形方向伸长,一面暴露到表面上和向内部深处发展。又如在轧制时,坯料的表面如被划伤,冷却时将造成应力集中,从而可能沿划痕开裂等等。这种裂纹若在锻造前不去掉,锻造时便可能扩展引起锻件裂纹。,2.折叠 折叠形成的原因是当金属坯料在轧制过程中,由于轧辊上的型槽定径不正确,或因型槽磨损面产生的毛刺在轧制时被卷入,形成和材料表面成一定倾角的折缝。对钢材,折缝

3、内有氧化铁夹杂,四周有脱碳。折叠若在锻造前不去掉,可能引起锻件折叠或开裂。,4.层状断口 层状断口的特征是其断口或断面与折断了的石板、树皮很相似。 层状断口多发生在合金钢(铬镍钢、铬镍钨钢等),碳钢中也有发现。这种缺陷的产生是由于钢中存在的非金属夹杂物、枝晶偏析以及气孔疏松等缺陷,在锻、轧过程中沿轧制方向被拉长,使钢材呈片层状。如果杂质过多,锻造就有分层破裂的危险。层状断口越严重,钢的塑性、韧性越差,尤其是横向力学性能很低,所以钢材如具有明显的层片状缺陷是不合格的,6.非金属夹杂 非金属夹杂物主要是熔炼或浇铸的钢水冷却过程中由于成分之间或金属与炉气、容器之间的化学反应形成的。另外,在金属熔炼和

4、浇铸时,由于耐火材料落入钢液中,也能形成夹杂物,这种夹杂物统称夹渣。在锻件的横断面上,非金属夹杂可以呈点状、片状、链状或团块状分布。严重的夹杂物容易引起锻件开裂或降低材料的使用性能。,5.亮线(亮区) 亮线是在纵向断口上呈现结晶发亮的有反射能力的细条线,多数贯穿整个断口,大多数产生在轴心部分。亮线主要是由于合金偏析造成的。轻微的亮线对力学性能影响不大,严重的亮线将明显降低材料的塑性和韧性。,6.非金属夹杂 非金属夹杂物主要是熔炼或浇铸的钢水冷却过程中由于成分之间或金属与炉气、容器之间的化学反应形成的。另外,在金属熔炼和浇铸时,由于耐火材料落入钢液中,也能形成夹杂物,这种夹杂物统称夹渣。在锻件的

5、横断面上,非金属夹杂可以呈点状、片状、链状或团块状分布。严重的夹杂物容易引起锻件开裂或降低材料的使用性能。,7.碳化物偏析 碳化物偏析经常在含碳高的合金钢中出现。其特征是在局部区域有较多的碳化物聚集。它主要是钢中的莱氏体共晶碳化物和二次网状碳化物,在开坯和轧制时未被打碎和均匀分布造成的。碳化物偏析将降低钢的锻造变形性能,易引起锻件开裂。锻件热处理淬火时容易局部过热、过烧和淬裂。制成的刀具使用时刃口易崩裂。,8.铝合金氧化膜 铝合金氧化膜一般多位于模锻件的腹板上和分模面附近。在低倍组织上呈微细的裂口,在高倍组织上呈涡纹状,在断口上的特征可分两类:其一,呈平整的片状,颜色从银灰色、浅黄色直至褐色、

6、暗褐色;其二,呈细小密集而带闪光的点状物。 铝合金氧化膜是熔铸过程中敞露的熔体液面与大气中的水蒸气或其它金属氧化物相互作用时所形成的氧化膜在转铸过程中被卷人液体金属的内部形成的。锻件和模锻件中的氧化膜对纵向力学性能无明显影响,但对高度方向力学性能影响较大,它降低了高度方向强度性能,特别是高度方向的伸长率、冲击韧度和高度方向抗腐蚀性能。,白点是锻件在冷却过程中产生的一种内部缺陷。在钢坯的纵向断口上呈圆形有椭圆形的银白色斑点。合金钢白点的色泽光亮,碳素钢的较暗些。白色斑点的平均直径由几毫米到几十毫米。图片1-1为时轮锻件纵向断面上的白点。在钢坯的横向断口上白点呈细小的裂纹(图片1-2)。从显微组织

7、上观察,在白点的邻近区域没有发现塑性变形痕迹。因此,白点是纯脆性的。,9.白点 白点的主要特征是在钢坯的纵向断口上呈圆形或椭圆形的银白色斑点,在横向断口上呈细小的裂纹。白点的大小不一,长度由120mm或更长。白点在镍铬钢、镍铬钼钢等合金钢中常见,普通碳钢中也有发现,是隐藏在内部的缺陷。白点是在氢和相变时的组织应力以及热应力的共同作用下产生的,当钢中含氢量较多和热压力加工后冷却(或锻后热处理)太快时较易产生。 用带有白点的钢锻造出来的锻件,在热处理时(淬火)易发生龟裂,有时甚至成块掉下。白点降低钢的塑性和零件的强度,是应力集中点,它像尖锐的切刀一样,在交变载荷的作用下,很容易变成疲劳裂纹而导致疲

8、劳破坏。所以锻造原材料中绝对不允许有白点。,(一)白点对钢的力学性能的影响 白点的存在对钢的性能有极为不利的影响。它使钢的力学性能降低,热处理淬火时使零件开裂,使用时造成零件的断裂。 白点对钢力学性能的影响与取样的位置及方向有很大关系。当试样轴线与白点分布平行时,力学性能的降低有时并不明显;当试样轴线与白点分布垂直时,力学性能将显著下降,尤其是塑性指针和冲击韧度降低更为明显。表1-1是白点对铬、镍、钼结构钢钢坯力学性能的影响;表1-2是白点对22CrMnMo钢齿轮轴力学性能的影响。,由于白点处是应力集中点,在交变和重复载荷作用下,常常成为疲劳源,导致零件疲劳断裂。国外电站设备曾发生因转子和叶轮

9、中有白点而造成的严重事故。因此,白点是一种不允许的缺陷。 近来有关数据介绍,白点不太严重的钢材,在适当的温度和应力状态条件下,当锻比足够大时,可以使白点焊合。,白点多发生在珠光体和马氏体类合金钢中,碳素钢程度较轻,奥氏体和铁素体类钢很少发现白点,莱氏体合金钢也未发现过白点。锻件尺寸愈大,白点愈易形成。因此,锻造白点敏感性钢的大型锻件时就应特别注意,例如电站的转子和叶轮锻件等。,(二)关于白点形成的原因 关于白点形成的理论较多。但比较有说服力而又能被实践证明的是:白点是由于钢中氢和组织应力共同作用的结果。这里的组织应力主要指奥氏体转变为马氏体和珠光体时形成的内应力。没有一定数量的氢和较显著的组织

10、应力,白点是不能形成的。但是,若只是含氢量较高,而组织应力不大,一般也不会出现白点。例如,单相的奥氏体和铁素体类钢,因没有相变的组织应力,就极少出现白点。,氢气和组织应力是如何促使形成白点的呢?目前对这些问题的认识大致如下:1)钢中含有氢时,使钢的塑性降低。当含氢量达到某数值时,塑性急剧地下降,造成氢脆现象。尤其当钢内长时间存在应力的情况下,氢可以扩散到应力集中区(间隙溶解的氢原子有集中到承受张应力的晶格中去的倾向),并使其塑性下降到几乎等于零。在应力足够大时就产生脆性破断。例如25Cr2Ni2Mo钢含 14.5cm3/100g的氢时,于900正火,600回火后的伸长率降至0.6%,断面收缩率

11、降至0;含7.84 cm3/100g的氢时,淬火状态的伸长率和断面收缩率均降至 0。20钢含170cm3/100g的氢时,退火状态的伸长率降为 0.2%,断面收缩率为0;含12.76cm3/100g的氢时,淬火状态的伸长率和断面收缩率均降至0;2)炼钢时钢液中吸收的氢,在钢锭凝固时因溶解度减少而析出。,图1-3为氢在铁中的溶解度曲线。它来不及逸出钢锭表面而存在于钢锭内部空隙处。压力加工之前加热时,氢又溶于钢中,压力加工后的冷却过程中由于奥氏体分解和温度降低,氢在钢中溶解度减少,氢原子从固溶体中析出到钢坯内部的一些显微空隙处。氢原子在这里将结合成分子状态,并产生相当大的压力(当钢中含氢量为0.0

12、01%,温度为400时,这种压力可高达1200MPa以上)。另外,氢与钢中的碳反应形成甲烷(CH4),也造成很大的分子压力。这一点被有的白点表面有脱碳现象所证实;3)钢坯在冷却过程中因相变而造成的组织应力在一定条件下可达到相当大的数值(树枝状偏析愈严重、冷却速度愈快、淬透性愈好的钢组织应力就愈大)。因此,钢氢脆失去了塑性,在组织应力及氢析出所造成的内应力的共同作用下,使钢发生了脆性破裂,这就形成了白点。压力加工过程中不均匀变形引起的附加应力和冷却时的热应力对白点形成也有一定影响。,铸钢因为内部有许多较大的空隙,氢析出时不会造成很大的内应力,因此对白点不敏感。铁素体和奥氏体类钢因冷却时无相变发生

13、,不会有组织应力,所以一般也不出现白点。莱氏体钢冷却时虽有较大的组织应力,但可能是由于氢在这些钢中形成稳定的氢化物和由于复杂的碳化物阻碍了氢的析出等原因,也不产生白点。 白点常常是锻件冷却至室温后几小时或几十小时,甚至更长的一段时间后才产生的。例如,160mm的马氏体类合金结构钢方坯,冷却后12、24、48h均未发现白点,直到72h才发现白点。另外,白点开始产生后,在以后的继续冷却和放置期间还不断地扩大和产生新的白点。因此,检查白点应在冷却后再隔一段时间进行。,(三)防止白点产生的对策 由于白点主要是由于钢中氢和组织应力共同作用下引起的,因此设法除氢和消除组织应力就可以避免白点的产生。其中首先

14、应是除氢。最彻底的办法是从熔炼工艺着手,使氢在钢中的含量减少到不至引起白点的产生。严格控制炼钢操作过程,采用真空浇注等是很有效的措施。如果炼钢过程中氢含量不能控制在2cm3/100g以下,则必须在锻后采用合理的除氢冷却规范,决不允许锻后直接空冷到室温。压力加工的钢材如果不存在白点,以后用这些钢坯锻成的锻件就不会再出现白点。因此对锻造来讲,关键问题是制定合理的锻后冷却规范。,为了消除白点,制定冷却规范的主要原则是:在尽量减小各种应力(相变组织应力、变形残余应力及冷却温度应力等)的条件下在氢扩散速度最快的温度区间,长时间保温,使氢能从钢锭中充分扩散出来。具体的措施是采用等温退火。 对马氏体类钢,在

15、等温转变时,有两个温度范围奥氏体稳定性很小,分解速度最快。一个是600620(保温15h奥氏体可分解20%);另一个是280320(16min内奥氏体可分解95%。试验证明,在这两个奥氏体分解比较快的温度范围内,氢扩散的速度也是最快的。,图1-4为氢的扩散速度与温度的关系曲线。体心立方晶格的铁素体比面心立方晶格的奥氏体可溶解的氢少。在600620长时间保温,进行等温退火时,钢的塑性较好,同时温度应力、相变应力较小,较安全,但时间要很长。在280320作等温退火,奥氏体分解快、需要的时间短,但相变应力和温度应力较大,材料塑性较低,对较大的锻件,如控制不好易出现裂纹。另外,较大截面的锻件,中心部分

16、的氢也很难扩散出去。因此,对铬镍钼钢的大锻件,一般采用起伏的冷却规范,既能充分除氢,尽量减小应力、又能提高效率。,图1-5为34CrNiMo1030mm转子锻件的冷却曲线。该曲线的主要特点是:锻后先保温一段时间,使锻件内外温度均匀,以消除变形不均匀引起的残余应力和冷却时的温度应力。然后缓冷至略高于马氏体开始转变温度Ms,这时奥氏体不是分解为脆性的马氏体,而是韧性较好的贝氏体,相变应力较小,在稍高于Ms点保持一段时间,使奥氏体充分分解,使氢充分向外扩散。但因温度低,氢气析出只在表面,锻件中心部分仍保留较多的氢;将锻件再加热到重结晶温度以上,并保温,使氢由含量多的心部向含量少的表面扩散,亦即使氢含量沿截面较均匀地分布,这时由于重结晶的作用使锻件的晶粒细化,为最终热处理创造较好的条件;再次缓冷到Ms点以上,氢从表面扩散出去,而中心部分仍被保留着;为使组织全部转变为索氏体,将锻件加热到600650并进行充分保温,一方面使奥氏体充分分解,另一方面使中心的氢尽量向表面扩散。,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 教学课件 > 高中课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号