第2章离散时间信号与系统的Z域分析课件知识分享

上传人:yulij****0329 文档编号:139001026 上传时间:2020-07-19 格式:PPT 页数:191 大小:2.42MB
返回 下载 相关 举报
第2章离散时间信号与系统的Z域分析课件知识分享_第1页
第1页 / 共191页
第2章离散时间信号与系统的Z域分析课件知识分享_第2页
第2页 / 共191页
第2章离散时间信号与系统的Z域分析课件知识分享_第3页
第3页 / 共191页
第2章离散时间信号与系统的Z域分析课件知识分享_第4页
第4页 / 共191页
第2章离散时间信号与系统的Z域分析课件知识分享_第5页
第5页 / 共191页
点击查看更多>>
资源描述

《第2章离散时间信号与系统的Z域分析课件知识分享》由会员分享,可在线阅读,更多相关《第2章离散时间信号与系统的Z域分析课件知识分享(191页珍藏版)》请在金锄头文库上搜索。

1、第2章 离散时间信号与系统的Z域分析,2.1 Z变换的定义及收敛域 2.2 Z反变换 2.3 Z变换的性质与定理 2.4 Z变换与拉普拉斯变换、傅里叶变换的关系 2.5傅里叶变换的定义及性质 2.6利用Z变换求解差分方程 2.7离散时间系统的系统函数和频率响应,2.1变换的定义及收敛域,2.1.1 z变换的定义,一个序列 的 变换定义为 其中, 是一个连续复变量,也就是说, 变换是在复频域内对离散时间信号与系统进行分析。由定义可见, 是一个复变量 的幂级数。亦可将 变换表示成算子的形式:,基于此, 变换算子可以看作是将序列 变换为函数 ,二者之间的相应关系可记为 由式(2.1.1)所定义的z变

2、换称为双边z变换,与此相对应的单边z变换则定义为 (2.1.2) 显然,只有 为因果序列(即 )时,其单边z变换与双边z变换才是相等的。,为使上式成立,就须确定 取值的范围,即收敛域。由于 为复数的模,则可以想象出收敛域为一圆环状区域,即,其中, 、 称为收敛半径,可以小到0,而 可以大到 。式(2.1.4)的 平面表示如图2.1.1所示。,常见的一类z变换是有理函数,即 使 的那些z值称为 的零点,而使 的那些z值称为 的极点。零点、极点也可能包含 处的点。由于 在收敛域内是解析函数,所以,收敛域内不包含极点。,2、序列形式与其z变换收敛域的关系,(2) 为右边序列,当 时, 为z的负幂级数

3、,根据级数理论,存在一个收敛半径 , 在以原点为中心、 为半径的圆外处处收敛,即收敛域为 。此时的 为因果序列,因此, 在无穷远处收敛是因果序列的特征;,当 时, 可写为 上式右端第一项是(1)中讨论过的有限长序列的z变换,其收敛域为 ;第二项为 的负幂级数,同样其收敛域为 。因此, 的收敛域为二者的重叠区域,即 ,如图2.1.3(b)阴影区域所示。,(3) 为左边序列,当 时, 为z的正幂级数,根据级数理论,必存在一个最大收敛半径 , 在以原点为中心、 为半径的圆内处收敛,即收敛为 ;,当 时, 可写为 上式右端第一项为z的正幂级数,同样其收敛域为 ;第二项为(1)中讨论过的有限长序列的z变

4、换,其收敛域为 。因此, 的收敛域为二者的重叠区域 。,(4) 为双边序列,通过(2)、(3)中的讨论可知,上式第一项为右边序列(因果序列),其收敛域为 ;第二项为左边序列,其收敛域为 ;若 ,则取交集得到双边序列的收敛域为 ,这是一个环形的收敛域。如图2.1.5(b)阴影区域所示。,表2.1.1 序列的形式与z变换收敛域的关系,2.1.3 常用序列的z变换,(1)单位抽样序列,z 变换,收敛域为整个z平面,(3)单位斜变序列,由(2)中讨论可知,将上式两边对z求导得,两边同乘以-z得 的z变换,当,,即,(4)右边指数序列,这是一个右边序列,其z变换为,当 ,即 时,有,零点为 ,极点为,(

5、5)左边指数序列,这是一个左边序列,其z变换为,当 ,即 时,有,零点为 ,极点为,(6)双边指数序列,该序列的z变换,若 ,则上面的级数收敛,得到,该序列的双边z变换的零点位于 及 ,极点位于 与 处。前已提及,z变换的收敛域内不应该包含任何极点。由上述分析进一步看出, 的收敛域内确实不包含任何极点。通常收敛域以极点为边界,对于多个极点的情况: 1)右边序列z变换的收敛域一定在模值最大极点所在的圆外,可能包含 ; 2)左边序列z变换的收敛域一定在模最小的极点所在的圆内,可能包含 。,2.2 z反变换,与连续时间系统中的拉普拉斯变换类似,在离散时间系统中,应用z变换的目的是为了把描述系统的差分

6、方程转换为复变量z的代数方程,然后写出离散系统的传递函数(z域传递函数)、做某种运算处理,再用z反变换求出离散时间系统的时间响应。,2.2.1部分分式展开法,在连续时间信号与系统中,曾用部分分式展开法求解拉普拉斯逆变换,同样在离散时间信号与系统中,当 的表达式为有理分式时,z反变换也可以用部分分式展开法求取。首先将 分解成多个部分分式之和,然后对各部分分式求z反变换,则所求序列 就是各部分分式的z反变换之和。在求各部分分式z反变换时,可利用表2.1.2中的基本z变换对。,例 2.2.1 已知 利用部分分式展开法求z反变换 。,解:,所以,考虑 收敛域知 应为右边序列。查表2.1.2中的z变换对

7、,得所求序列为,例 2.2.2 已知 , 利用部分分式展开法求z反变换 。,解,则,上式第一项只有极点 ,由收敛域中 可知,该项的反变换应为右边因果序列,则,,,第二项只有极点 ,同样由收敛域中 可知,该项的反变换应为左边序列,则 ,,所以,所求序列为,或写成,由以上分析可见,在求z反变换时,一定要考虑收敛域,注意区别哪些极点对应右边序列,哪些极点对应左边序列。,2.2.2 幂级数展开法,前面已经提到, 为 的幂级数,即 由此可见,在给定的收敛域内,如果将 展开为幂级数,那么 项的系数就是序列 。 将 展开为幂级数常用的方法有两种。,1)按幂级数公式展开,这种方法是运用已经熟知的幂级数展开公式

8、完成对 的展开,往往多用于 是超越函数的情况,如 是对数、双曲正弦等,这些函数的幂级数展开公式大多已有表格可查。下面通过例子对其进行说明。,例 2.2.3 求 , 的反变换 。 解: 依据幂级数展开公式 , 以及 中的 (由收敛域得到),可得 由上式看到, 项的系数是 ,又由收敛域的形式得知, 是一个右边序列,则所求 为,2)长除法,一般为有理分式,用 的分母多项式去除分子多项式就可得到其幂级数形式。在做长除之前,首先应该根据 的ROC判断 是右边序列,还是左边序列,然后决定将 展开z的降幂级数或升幂级数。观察z变换的定义式 ,若 是右边序列,当 时,z的幂逐渐减小,则此时,应该将 展开z的降

9、幂级数;若 是左边序列,当 时,z的幂逐渐增加,则应该将 展开z的升幂级数。,例2.2.2 试用长除法求 , 的z 反变换 。 解 由表达式知, 只有一个极点 ,且收敛域 在极点所在圆的外部,所以 应为右边序列,则应将 展开成z的降幂级数。运用长除法得,即 所以 。,例2.2.3 试用长除法求 , 的z反变换 。 解 因为收敛域为环状,所以所求序列为双边序列。对于双边序列可先将其分解为右边序列和左边序列,所以先将 展开成部分分式再长除。,根据式(2.2.3)求系数 、 则,所以 为,观察 的收敛域可知,上式的第一项对应左边序列,第二项对应右边序列。分别运用长除法如下:,即,的幂级数形式为 所以

10、z反变换 为,2.2.3. 围线积分法(留数法),除了以上讨论的求解z反变换的两种方法外,z反变换也可以用反演积分来计算。现在用复变函数理论来研究 的反变换。 对z变换定义式两端同乘以 ,得 对上式两端进行围线积分,可得,其中c是一条位于 收敛域内环绕原点的逆时针围线。若级数收敛,交换上式右端的积分与求和次序,得 依据柯西积分定理 则综合得,将上式的变量k用n代换,得 (2.2.7) 这就是围线积分的z反变换公式。,直接计算式(2.2.7)的围线积分比较复杂, 当 是有理分式时,通常都采用留数定理来求解。若 是被积函数 位于c内的所有极点,则按照留数定理,有,若 是被积函数 位于c外的所有极点

11、, 且 分母多项式z的阶次比分子多项式z的阶次高两阶或两阶以上,则按照留数辅助定理,有 实际使用中,具体选用哪一个,取决于计算的简便性,一般选用计算一阶极点留数的那一个。,若 是 的一阶极点,则有 若 是 的多重(s阶极点),则有,需要注意的是,在使用上述两式时,一定要计算 出 位于c内或c外的所有可能的极点处的留数,而且,当n取值不同时, 处极点的阶次可能会发生变化。,例2.2.4 求 , 的反变换。 解 的反变换为 由于收敛域为 ,所以 应为因果序列,当 时, 不是 的极点。所以,在收敛域内环绕原点的围线c内只有一阶极点 、 ,则,由此得所求序列为,例2.2.5 试用留数法求 , 的z反变

12、换 。 解 c为 收敛域内的围线, 如图2.2.1所示。,当 时,围线c内只有一个一阶极点 ,则 当 时,围线c外只有一个一阶极点 ,而c内有一个一阶极点 以及 阶极点 ,而且,综合上述分析,得 可见,与例2.2.3结果相同。,2.3 变换的性质与定理,在研究离散时间信号与系统过程中,理解并掌握z变换的一些常用性质与定理是特别重要的。这些性质往往与z变换对结合起来用,使z变换与z反变换的求解过程得到简化。,1.线性性质,z变换是一种线性变换,满足均匀性与叠加性,即若 则对于任意常数a、b下式成立: 收敛域一般是 和 收敛域的重叠部分。若在这些组合过程中,某些零点与极点相抵消,则收敛域有可能扩大

13、。,例2.3.1 已知 ,求其z变换。 解 依据欧拉公式,得 由题知, 是一个右边因果序列。查表2.1.2可知,由此得 综合上述分析,得所求z变换为,2移位性质,1)双边z变换 若序列 的双边z变换为 , 则移位m后的序列 的双边z变换为 , 其中m为任意整数,若m为正,则为右移(延迟);若m为负,则为左移(超前)。,证明 依据双边z变换的定义,可得 可以看出,序列位移只会使新序列的z变换在 或 处的零极点情况发生变化:当 m为正时,在 处引入极点,在 处引入零点;当m为负时,在 处引入极点,在 处引入零点。也就是说, 的收敛域与 的收敛域相同, 或 可能除外。,例如, 的收敛域为整个z平面,

14、 而 在 处不收敛, 在 处不收敛。但如果 是双边序列, 收敛域为环形区域,则序列位移并不会使z变换收敛域发生变化。,2) 单边z变换,设序列 的单边z变换为 ,则 右移k与左移k(k为正整数)后新序列的单边 变换分别为,(2.3.7),如果 是因果序列,则 项都等于零,而且由于因果序列的单边z变换与双边z变换是相同的,于是因果序列右移后的单边z变换为 而因果序列左移后的单边z变换为,由于在实际中,需处理的信号大多是因果序列,除了移位性质以外,双边z变换的性质大多都适用于单边z变换。 另外,从以上分析可知,若序列 延迟一个单位,即 ,新序列的z变换多乘一个 ,所以,在后续内容中,绘制信号流图时常用 表示单位延迟。,例2.3.2 求序列 的z变换。 解 查表2.1.2可知

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 教学课件 > 高中课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号