【大学课件】传感器原理及工程应用教案----第11章讲课资料

上传人:yuzo****123 文档编号:137853944 上传时间:2020-07-12 格式:PPT 页数:231 大小:2.09MB
返回 下载 相关 举报
【大学课件】传感器原理及工程应用教案----第11章讲课资料_第1页
第1页 / 共231页
【大学课件】传感器原理及工程应用教案----第11章讲课资料_第2页
第2页 / 共231页
【大学课件】传感器原理及工程应用教案----第11章讲课资料_第3页
第3页 / 共231页
【大学课件】传感器原理及工程应用教案----第11章讲课资料_第4页
第4页 / 共231页
【大学课件】传感器原理及工程应用教案----第11章讲课资料_第5页
第5页 / 共231页
点击查看更多>>
资源描述

《【大学课件】传感器原理及工程应用教案----第11章讲课资料》由会员分享,可在线阅读,更多相关《【大学课件】传感器原理及工程应用教案----第11章讲课资料(231页珍藏版)》请在金锄头文库上搜索。

1、11.1 温度测量 11.2 压力测量 11.3 流量测量 11.4 物位测量 11.5 机械量测量 11.6 变送器,第11章 传感器在工程检测中的应用,返回主目录,第11章 传感器在工程监测中的应用,在工业生产过程及工程检测中, 为了对各种工业参数(如压力、温度、流量、物位、位移等)进行检测与控制, 首先要把这些参数转换成便于传送的信息, 这就要用到各种传感器, 把传感器与其它装置组合起来, 组成一个检测系统或调节系统, 完成对工业参数的检测与控制。 考虑到系统中传感器与其它装置的兼容性与互换性, 它们之间是用标准信号进行传输的, 这些标准信号都是符合国际标准的信号, 例如直流电流为420

2、 mA、直流电压为15 V、压力信号为20100 kPa, 以前也曾以直流电流010 mA作为通用的标准信号。,对一般输出为非标准信号的传感器, 需把传感器的输出信号通过变送器(或变送器功能模块电路)变换成标准信号, 有了统一的信号形式和数值范围, 无论是仪表还是计算机, 只要有同样的输入电路或接口, 就可以从各种变送器获得被测变量的信息, 而且便于组成检测系统或调节系统。 在工业自动化仪表中, 有些变送器既有信号检测又有变送, 如后面要介绍的压力(差压)变送器、 一体化温度变送器等, 这些变送器也可以认为是输出标准信号的传感器。 下 面将着重介绍工程检测中应用的传感器及变送器。,11.1 温

3、度测量,一、 温度概述 1 温度与温标 温度是工业生产和科学实验中一个非常重要的参数。 物体的许多物理现象和化学性质都与温度有关。许多生产过程都是在一定的温度范围内进行的, 需要测量温度和控制温度。 随着科学技术的发展, 对温度的测量越来越普遍, 而且对温度测量的准确度也有更高的要求。 温度是表征物体冷热程度的物理量。温度不能直接加以测量, 只能借助于冷热不同的物体之间的热交换, 以及物体的某些物理性质随着冷热程度不同而变化的特性间接测量。,在实际应用中, 一般直接用T和t代替T90和t90。 2 温度测量的主要方法和分类 (1) 温度传感器的组成在工程中无论是简单的还是复杂的测温传感器, 就

4、测量系统的功能而言, 通常由现场的感温元件和控制室的显示装置两部分组成, 如图 11 - 1 所示。简单的温度传感器往往是温度传感器和显示组成一体的, 一般在现场使用。,(2) 温度测量方法及分类测量方法按感温元件是否与被测介质接触, 可以分成接触式与非接触式两大类。 接触式测温方法是使温度敏感元件和被测温度对象相接触, 当被测温度与感温元件达到热平衡时, 温度敏感元件与被测温度对象的温度相等。这类温度传感器具有结构简单, 工作可靠,精度高,稳定性好,价格低廉等优点。这类测温方法的温度传感器主要有: 基于物体受热体积膨胀性质的膨胀式温度传感器,基于导体或半导体电阻值随温度变化的电阻式温度传感器

5、, 基于热电效应的热电偶温度传感器。 ,非接触式测温方法是应用物体的热辐射能量随温度的变化而变化的原理。物体辐射能量的大小与温度有关, 并且以电磁波形式向四周辐射, 当选择合适的接收检测装置时, 便可测得被测对象发出的热辐射能量并且转换成可测量和显示的各种信号, 实现温度的测量。这类测温方法的温度传感器主要有光电高温传感器、红外辐射温度传感器、光纤高温传感器等。非接触式温度传感器理论上不存在热接触式温度传感器的测量滞后和在温度范围上的限制, 可测高温、 腐蚀、 有毒、 运动物体及固体、 液体表面的温度, 不干扰被测温度场, 但精度较低, 使用不太方便。 ,二、 膨胀式温度传感器 根据液体、 固

6、体、 气体受热时产生热膨胀的原理, 这类温度传感器有液体膨胀式、 固体膨胀式和气体膨胀式。 1 液体膨胀式 在有刻度的细玻璃管里充入液体(称为工作液, 如水银、 酒精等)构成液体膨胀式温度计。常用的有水银玻璃温度计和电接点式温度计, 这种温度计远不能算传感器, 它只能就地指示温度。 ,电接点式温度计可对设定的某一温度发出开关信号或进行位式控制, 有固定式和可调式两种。 图 11 - 2 所示为可调电接点式温度计, 其中一根铂丝接在毛细管下部固定处,另一根铂丝根据设定温度可以上下移动, 当升至设定温度时, 铂丝与水银柱接通, 反之断开, 这种既可指示, 又能发出通断信号, 常用于温度测量和双位控

7、制。 2 固体膨胀式 固体膨胀式是以双金属元件作为温度敏感元件受热而产生膨胀变形来测温的。 它由两种线膨胀系数不同的金属紧固结合而成双金属片, 为提高灵敏度常作成螺旋形。图 11 -3 为双金属温度计的结构示意图。,螺旋形双金属片一端固定, 另一端连接指针轴, 当温度变化时, 双金属片弯曲变形, 通过指针轴带动指针偏转显示温度。 它常用于测量-80600范围的温度, 抗震性能好,读数方便, 但精度不太高, 用于工业过程测温、 上下限报警和控制。 3 气体膨胀式 气体膨胀式是利用封闭容器中的气体压力随温度升高而升高的原理来测温的, 利用这种原理测温的温度计又称压力计式温度计, 如图 11 - 4

8、 所示。温包、毛细管和弹簧管三者的内腔构成一个封闭容器, 其中充满工作物质(如气体常为氮气), 工作物质的压力经毛细管传给弹簧管, 使弹簧管产生变形, 并由传动机构带动指针, 指示出被测温度的数值。,压力温度计结构简单、抗振及耐腐蚀性能好, 与微动开关组合可作温度控制器用, 但它的测量距离受毛细管长度限制, 一般充液体可达20m, 充气体或蒸汽可达60m。 三、 热电偶传感器 热电偶是工程上应用最广泛的温度传感器。 它构造简单, 使用方便, 具有较高的准确度、稳定性及复现性, 温度测量范围宽, 在温度测量中占有重要的地位。 1. 热电偶测温原理 两种不同的导体(或半导体)组成一个闭合回路, 如

9、图 11 - 5 所示。,的导体或半导体的组合称为热电偶。 两个接点, 一个称工作端, 又称测量端或热端, 测温时将它置于被测介质中; 另一个称自由端, 又称参考端或冷端。 在图11 - 5 所示的回路中, 所产生的热电势由两部分组成: 温差电势和接触电势。 接触电势是由于两种不同导体的自由电子密度不同而在接触处形成的电动势。 两种导体接触时,自由电子由密度大的导体向密度小的导体扩散, 在接触处失去电子的一侧带正电, 得到电子的一侧带负电, 形成稳定的接触电势。接触电势的数值取决于两种不同导体的性质和接触点的温度。两接点的接触电势EAB(T)和EAB(T0)可表示为,EAB(T)= 式中: K

10、波尔兹曼常数; e单位电荷电量; NAT、NBT和NAT0、NBT0分别在温度为T和T0时, 导体A、B的电子密度。 温差电势是同一导体的两端因其温度不同而产生的一种热电势。,同一导体的两端温度不同时, 高温端的电子能量要比低温端的电子能量大, 因而从高温端跑到低温端的电子数比从低温端跑到高温端的要多, 结果高温端因失去电子而带正电, 低温端因获得多余的电子而带负电, 因此, 在导体两端便形成接触电势, 其大小由下面公式给出:,式中: NAT和NBT分别为A导体和B导体的电子密度, 是温度的函数。 热电偶回路中产生的总热电势为 AB(T, T0)=EAB(T)+EB(T, T0)-EAB(T0

11、)-EA(T, T0) (11 - 6) 在总热电势中, 温差电势比接触电势小很多, 可忽略不计, 热电偶的热电势可表示为 EAB(T, T0)=EAB(T)-EAB(T0) (11 - 7) 对于已选定的热电偶, 当参考端温度T0恒定时,EAB (T0)=c为常数, 则总的热电动势就只与温度T成单值函数关系, 即 EAB(T, T)=EAB(T)-c=f(T),实际应用中, 热电势与温度之间关系是通过热电偶分度表来确定的。分度表是在参考端温度为0时, 通过实验建立起来的热电势与工作端温度之间的数值对应关系。用热电偶测温, 还要掌握热电偶基本定律。下面引述几个常用的热电偶定律。 1. 热电偶基

12、本定律 (1) 中间导体定律利用热电偶进行测温, 必须在回路中引入连接导线和仪表, 接入导线和仪表后会不会影响回路中的热电势呢?中间导体定律说明, 在热电偶测温回路内, 接入第三种导体, 只要其两端温度相同, 则对回路的总热电势没有影响。,接入第三种导体回路如图 11 - 6 所示。 由于温差电势可忽略不计, 则回路中的总热电势等于各接点的接触电势之和。 即 EABC(T,T0)=EAB(T)+EBC(T0)+ECA(T0) (11 - 9) 当T= T0 时, 有 BC(T0)+ECA(T0)=-E(T0) (11 - 10) 将(11 - 10)式代入(11 - 9)式中得 (T, T0)

13、=EAB(T)-EAB(T0)=EAB(T, T0)(11 - 11) 同理, 加入第四、第五种导体后, 只要加入的导体两端温度相等, 同样不影响回路中的总热电势。 ,(2)中间温度定律 热电偶AB在接点温度为t、t0时的热电势EAB(t, t0)等于热电偶AB在接点温度t、tc和tc、t0时的热电势EAB(t, tc)和EAB(tc, t0)的代数和(见图 11 - 7 ), 即: 该定律是参考端温度计算修正法的理论依据。 在实际热电偶测温回路中,利用热电偶这一性质,可对参考端温度不为0的热电势进行修正。 (3)均质导体定律 由一种均质导体组成的闭合回路中, 不论导体的截面和长度如何以及各处

14、的温度分布如何, 都不能产生热电势。这条定理说明, 热电偶必须由两种不同性质的均质材料构成。,3.热电偶类型 理论上讲, 任何两种不同材料的导体都可以组成热电偶, 但为了准确可靠地测量温度, 对组成热电偶的材料必须经过严格的选择。工程上用于热电偶的材料应满足以下条件: 热电势变化尽量大, 热电势与温度关系尽量接近线性关系, 物理、 化学性能稳定, 易加工, 复现性好, 便于成批生产, 有良好的互换性。 实际上并非所有材料都能满足上述要求。 目前在国际上被公认比较好的热电材料只有几种。国际电工委员会(IEC)向世界各国推荐8种标准化热电偶, 所谓标准化热电偶, 它已列入工业标准化文件中, 具有统

15、一的分度表。 我国从1988年开始采用IEC标准生产热电偶。表11-1 为我国采用的几种热电偶的主要性能和特点。,表中所列的每一种热电偶中前者为热电偶的正极, 后者为负极。 目前工业上常用的有四种标准化热电偶, 即铂铑30-铂铑6, 铂铑10-铂, 镍铬-镍硅和镍铬-铜镍(我国通常称为镍铬-康铜)热电偶, 它的分度表见表 11 - 2 至表 11 - 5,另外, 目前还生产一些特殊用途的热电偶, 以满足特殊测温的需要。 如用于测量3800超高温的钨镍系列热电偶, 用于测量2273K的超低温的镍铬-金铁热电偶等。 4. 热电偶的结构形式 为了适应不同生产对象的测温要求和条件, 热电偶的结构形式有

16、普通型热电偶、铠装型热电偶和薄膜热电偶等。 (1)普通型热电偶 普通型结构热电偶工业上使用最多, 它一般由热电极、绝缘套管、保护管和接线盒组成, 其结构如图 11 - 8 所示。普通型热电偶按其安装时的连接形式可分为固定螺纹连接、固定法兰连接、 活动法兰连接、 无固定装置等多种形式。 ,(2)铠装热电偶 铠装热电偶又称套管热电偶。它是由热电偶丝、 绝缘材料和金属套管三者经拉伸加工而成的坚实组合体, 如图 11 - 9所示。它可以做得很细很长, 使用中随需要能任意弯曲。铠装热电偶的主要优点是测温端热容量小, 动态响应快, 机械强度高, 挠性好, 可安装在结构复杂的装置上, 因此被广泛用在许多工业部门中。 (3)薄膜热电偶 薄膜热电偶是由两种薄膜热电极材料, 用真空蒸镀、 化学凃层等办法蒸镀到绝缘基板上面制成的一种特殊热电偶, 如图 11 - 10 所示。 薄膜热电偶的热接点可以做

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 教学课件 > 高中课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号