协整与误差修正模型很不错的知识课件

上传人:youn****329 文档编号:137205600 上传时间:2020-07-06 格式:PPT 页数:44 大小:314KB
返回 下载 相关 举报
协整与误差修正模型很不错的知识课件_第1页
第1页 / 共44页
协整与误差修正模型很不错的知识课件_第2页
第2页 / 共44页
协整与误差修正模型很不错的知识课件_第3页
第3页 / 共44页
协整与误差修正模型很不错的知识课件_第4页
第4页 / 共44页
协整与误差修正模型很不错的知识课件_第5页
第5页 / 共44页
点击查看更多>>
资源描述

《协整与误差修正模型很不错的知识课件》由会员分享,可在线阅读,更多相关《协整与误差修正模型很不错的知识课件(44页珍藏版)》请在金锄头文库上搜索。

1、9.3 协整与误差修正模型,一、长期均衡关系与协整 二、协整检验 三、误差修正模型,一、长期均衡关系与协整,0、问题的提出,经典回归模型(classical regression model)是建立在稳定数据变量基础上的,对于非稳定变量,不能使用经典回归模型,否则会出现虚假回归等诸多问题。 由于许多经济变量是非稳定的,这就给经典的回归分析方法带来了很大限制。 但是,如果变量之间有着长期的稳定关系,即它们之间是协整的(cointegration),则是可以使用经典回归模型方法建立回归模型的。 例如,中国居民人均消费水平与人均GDP变量的例子中: 因果关系回归模型要比ARMA模型有更好的预测功能,

2、 其原因在于,从经济理论上说,人均GDP决定着居民人均消费水平,而且它们之间有着长期的稳定关系,即它们之间是协整的(cointegration)。,经济理论指出,某些经济变量间确实存在着长期均衡关系,这种均衡关系意味着经济系统不存在破坏均衡的内在机制,如果变量在某时期受到干扰后偏离其长期均衡点,则均衡机制将会在下一期进行调整以使其重新回到均衡状态。 假设X与Y间的长期“均衡关系”由式描述,1、长期均衡,式中:t是随机扰动项。 该均衡关系意味着:给定X的一个值,Y相应的均衡值也随之确定为0+1X。,实际情况往往并非如此,如果t-1期末,发生了上述第二种情况,即Y的值小于其均衡值,则Y的变化往往会

3、比第一种情形下Y的变化Yt大一些; 反之,如果Y的值大于其均衡值,则Y的变化往往会小于第一种情形下的Yt 。 可见,如果Yt=0+1Xt+t正确地提示了X与Y间的长期稳定的“均衡关系”,则意味着Y对其均衡点的偏离从本质上说是“临时性”的。 因此,一个重要的假设就是:随机扰动项t必须是平稳序列。 显然,如果t有随机性趋势(上升或下降),则会导致Y对其均衡点的任何偏离都会被长期累积下来而不能被消除。,式Yt=0+1Xt+t中的随机扰动项也被称为非均衡误差(disequilibrium error),它是变量X与Y的一个线性组合:,(*),因此,如果Yt=0+1Xt+t式所示的X与Y间的长期均衡关系

4、正确的话,(*)式表述的非均衡误差应是一平稳时间序列,并且具有零期望值,即是具有0均值的I(0)序列。 从这里已看到,非稳定的时间序列,它们的线性组合也可能成为平稳的。 例如:假设Yt=0+1Xt+t式中的X与Y是I(1)序列,如果该式所表述的它们间的长期均衡关系成立的话,则意味着由非均衡误差(*)式给出的线性组合是I(0)序列。这时我们称变量X与Y是协整的(cointegrated)。,如果序列X1t,X2t,Xkt都是d阶单整,存在向量 =(1,2,k),使得 Zt= XT I(d-b) 其中,b0,X=(X1t,X2t,Xkt)T,则认为序列X1t,X2t,Xkt是(d,b)阶协整,记为

5、XtCI(d,b),为协整向量(cointegrated vector)。,协整,在中国居民人均消费与人均GDP的例中,该两序列都是2阶单整序列,而且可以证明它们有一个线性组合构成的新序列为0阶单整序列,于是认为该两序列是(2,2)阶协整。 由此可见:如果两个变量都是单整变量,只有当它们的单整阶数相同时,才可能协整;如果它们的单整阶数不相同,就不可能协整。,三个以上的变量,如果具有不同的单整阶数,有可能经过线性组合构成低阶单整变量。,例如,如果存在:,并且,那么认为:,(d,d)阶协整是一类非常重要的协整关系,它的经济意义在于:两个变量,虽然它们具有各自的长期波动规律,但是如果它们是(d,d)

6、阶协整的,则它们之间存在着一个长期稳定的比例关系。 例如:前面提到的中国CPC和GDPPC,它们各自都是2阶单整,并且将会看到,它们是(2,2)阶协整,说明它们之间存在着一个长期稳定的比例关系,从计量经济学模型的意义上讲,建立如下居民人均消费函数模型,从协整的定义可以看出:,变量选择是合理的,随机误差项一定是“白噪声”(即均值为0,方差不变的稳定随机序列),模型参数有合理的经济解释。 这也解释了尽管这两时间序列是非稳定的,但却可以用经典的回归分析方法建立回归模型的原因。,从这里,我们已经初步认识到:检验变量之间的协整关系,在建立计量经济学模型中是非常重要的。 而且,从变量之间是否具有协整关系出

7、发选择模型的变量,其数据基础是牢固的,其统计性质是优良的。,二、协整检验,1、两变量的Engle-Granger检验,为了检验两变量Yt,Xt是否为协整,Engle和Granger于1987年提出两步检验法,也称为EG检验。 第一步,用OLS方法估计方程 Yt=0+1Xt+t 并计算非均衡误差,得到:,称为协整回归(cointegrating)或静态回归(static regression)。,的单整性的检验方法仍然是DF检验或者ADF检验。,由于协整回归中已含有截距项,则检验模型中无需再用截距项。如使用模型1,进行检验时,拒绝零假设H0:=0,意味着误差项et是平稳序列,从而说明X与Y间是协

8、整的。,需要注意是,这里的DF或ADF检验是针对协整回归计算出的误差项,而非真正的非均衡误差t进行的。,而OLS法采用了残差最小平方和原理,因此估计量是向下偏倚的,这样将导致拒绝零假设的机会比实际情形大。 于是对et平稳性检验的DF与ADF临界值应该比正常的DF与ADF临界值还要小。,MacKinnon(1991)通过模拟试验给出了协整检验的临界值,表9.3.1是双变量情形下不同样本容量的临界值。,例9.3.1 检验中国居民人均消费水平CPC与人均国内生产总值GDPPC的协整关系。,在前文已知CPC与GDPPC都是I(2)序列,而2.10中已给出了它们的回归式,R2=0.9981,通过对该式计

9、算的残差序列作ADF检验,得适当检验模型,(-4.47) (3.93) (3.05) LM(1)=0.00 LM(2)=0.00,t=-4.47-3.75=ADF0.05,拒绝存在单位根的假设,残差项是稳定的,因此中国居民人均消费水平与人均GDP是(2,2)阶协整的,说明了该两变量间存在长期稳定的“均衡”关系。,2、多变量协整关系的检验扩展的E-G检验,多变量协整关系的检验要比双变量复杂一些,主要在于协整变量间可能存在多种稳定的线性组合。 假设有4个I(1)变量Z、X、Y、W,它们有如下的长期均衡关系:,(*),其中,非均衡误差项t应是I(0)序列:,(*),然而,如果Z与W,X与Y间分别存在

10、长期均衡关系:,则非均衡误差项v1t、v2t一定是稳定序列I(0)。于是它们的任意线性组合也是稳定的。例如,(*),由于vt象(*)式中的t一样,也是Z、X、Y、W四个变量的线性组合,由此(*)式也成为该四变量的另一稳定线性组合。 (1, -0,-1,-2,-3)是对应于(*)式的协整向量,(1,-0-0,-1,1,-1)是对应于(*)式的协整向量。,一定是I(0)序列。,对于多变量的协整检验过程,基本与双变量情形相同,即需检验变量是否具有同阶单整性,以及是否存在稳定的线性组合。 在检验是否存在稳定的线性组合时,需通过设置一个变量为被解释变量,其他变量为解释变量,进行OLS估计并检验残差序列是

11、否平稳。 如果不平稳,则需更换被解释变量,进行同样的OLS估计及相应的残差项检验。 当所有的变量都被作为被解释变量检验之后,仍不能得到平稳的残差项序列,则认为这些变量间不存在(d,d)阶协整。,检验程序:,同样地,检验残差项是否平稳的DF与ADF检验临界值要比通常的DF与ADF检验临界值小,而且该临界值还受到所检验的变量个数的影响。,表9.3.2给出了MacKinnon(1991)通过模拟试验得到的不同变量协整检验的临界值。,2、多变量协整关系的检验JJ检验,Johansen于1988年,以及与Juselius于1990年提出了一种用极大或然法进行检验的方法,通常称为JJ检验。 高等计量经济学

12、(清华大学出版社,2000年9月)P279-282. E-views中有JJ检验的功能。,三、误差修正模型,前文已经提到,对于非稳定时间序列,可通过差分的方法将其化为稳定序列,然后才可建立经典的回归分析模型。 如:建立人均消费水平(Y)与人均可支配收入(X)之间的回归模型:,1、误差修正模型,式中, vt= t- t-1,差分,X,Y 成为 平稳 序列,建立差分回归模型,如果Y与X 具有共同的 向上或向下 的变化趋势,(1)如果X与Y间存在着长期稳定的均衡关系 Yt=0+1Xt+t 且误差项t不存在序列相关,则差分式 Yt=1Xt+t 中的t是一个一阶移动平均时间序列,因而是序列相关的;,然而

13、,这种做法会引起两个问题:,(2)如果采用差分形式进行估计,则关于变量水平值的重要信息将被忽略,这时模型只表达了X与Y间的短期关系,而没有揭示它们间的长期关系。 因为,从长期均衡的观点看,Y在第t期的变化不仅取决于X本身的变化,还取决于X与Y在t-1期末的状态,尤其是X与Y在t-1期的不平衡程度。 另外,使用差分变量也往往会得出不能令人满意回归方程。,例如,使用Yt=1Xt+t回归时,很少出现截距项显著为零的情况,即我们常常会得到如下形式的方程:,在X保持不变时,如果模型存在静态均衡(static equilibrium),Y也会保持它的长期均衡值不变。 但如果使用(*)式,即使X保持不变,Y

14、也会处于长期上升或下降的过程中(Why?),这意味着X与Y间不存在静态均衡。 这与大多数具有静态均衡的经济理论假说不相符。 可见,简单差分不一定能解决非平稳时间序列所遇到的全部问题,因此,误差修正模型便应运而生。,(*),误差修正模型(Error Correction Model,简记为ECM)是一种具有特定形式的计量经济学模型,它的主要形式是由Davidson、 Hendry、Srba和Yeo于1978年提出的,称为DHSY模型。,为了便于理解,我们通过一个具体的模型来介绍它的结构。 假设两变量X与Y的长期均衡关系为: Yt=0+1Xt+t 由于现实经济中X与Y很少处在均衡点上,因此实际观测

15、到的只是X与Y间的短期的或非均衡的关系,假设具有如下(1,1)阶分布滞后形式,该模型显示出第t期的Y值,不仅与X的变化有关,而且与t-1期X与Y的状态值有关。,由于变量可能是非平稳的,因此不能直接运用OLS法。对上述分布滞后模型适当变形得,或,式中,,(*),如果将(*)中的参数,与Yt=0+1Xt+t中的相应参数视为相等,则(*)式中括号内的项就是t-1期的非均衡误差项。 (*)式表明:Y的变化决定于X的变化以及前一时期的非均衡程度。同时,(*)式也弥补了简单差分模型Yt=1Xt+t的不足,因为该式含有用X、Y水平值表示的前期非均衡程度。因此,Y的值已对前期的非均衡程度作出了修正。,称为一阶

16、误差修正模型(first-order error correction model)。,(*)式可以写成:,(*),知,一般情况下|1 ,由关系式=1-得01。可以据此分析ecm的修正作用:,(*),其中:ecm表示误差修正项。由分布滞后模型,(1)若(t-1)时刻Y大于其长期均衡解0+1X,ecm为正,则(-ecm)为负,使得Yt减少; (2)若(t-1)时刻Y小于其长期均衡解0+1X ,ecm为负,则(-ecm)为正,使得Yt增大。 (*)体现了长期非均衡误差对的控制。,其主要原因在于变量对数的差分近似地等于该变量的变化率,而经济变量的变化率常常是稳定序列,因此适合于包含在经典回归方程中。,需要注意的是:在实际分析中,变量常以对数的形式出现。,于是:(1)长期均衡模型 Yt=0+1Xt+t 中的1可视为Y关于X的长期弹性(long-run elasticity),(2)短期非均衡模型

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 教学课件 > 高中课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号