体育场风洞试验研究.doc

上传人:bao****ty 文档编号:132308311 上传时间:2020-05-14 格式:DOC 页数:15 大小:437KB
返回 下载 相关 举报
体育场风洞试验研究.doc_第1页
第1页 / 共15页
体育场风洞试验研究.doc_第2页
第2页 / 共15页
体育场风洞试验研究.doc_第3页
第3页 / 共15页
体育场风洞试验研究.doc_第4页
第4页 / 共15页
体育场风洞试验研究.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《体育场风洞试验研究.doc》由会员分享,可在线阅读,更多相关《体育场风洞试验研究.doc(15页珍藏版)》请在金锄头文库上搜索。

1、嘉兴市体育场风洞试验研究嘉兴市建筑设计研究院有限公司 单德贵 陈立新浙江大学土木系 沈国辉【摘要】 通过风洞试验研究了B类地貌下嘉兴市体育场屋盖结构的风荷载分布,提出了风洞试验和数据处理的具体方法,并给出了该体育场主体承重结构和围护结构设计时所需的风荷载参数。试验研究表明,对于这种大型、复杂的敞开结构,进行系统的风荷载试验和研究是十分必要的。一、引言 嘉兴市体育场(图1)是一座大型综合性体育场,为嘉兴体育中心的第一期工程,可容纳观众35000人,建筑面积为5.5万m。体育场采用椭圆形双轴对称布置方式,屋盖支撑体系为钢桁架和钢桁架巨型拱结构,屋面为球面造型,折板形状,采用的是PVC聚脂膜材料,剖

2、面如图2所示。我国荷载规范1对于这种造型独特的体育场屋盖结构的风荷载计算缺乏相应的体型系数。因此为了保证该体育场结构设计的安全、经济、合理,有必要进行该体育场屋面风压测定的风洞试验,即按相似原理的要求,在模拟大气边界层流场的风洞中进行模型试验,测定建筑物表面风压和体型系数。图1 嘉兴市体育场风洞试验模型图2 体育场剖面示意图二、试验简介1试验设备 试验在CGB1建筑风洞中进行,该风洞为串联双试验段回流式中性大气边界层风洞。该风洞有两个试验段,大试验段为闭口式,长10米,宽3米、高2米,小试验段长9米,宽1.2米,高1.8米,本次试验在大试验段完成。考虑到嘉兴市以及该体育场周围的地形、地貌特点,

3、按结构荷载规范1确定该建筑所在地为B类地貌,即地貌粗糙度指数。在风洞中采用挡板、尖塔和粗糙元模拟技术,图3和图4分别为风洞模拟的风剖面和湍流度,可以发现该风场符合B类地貌的要求。本次模型试验得出的风压系数可以直接应用到实际的建筑中。在风压测量、记录及数据处理系统中,由美国Scanivalve扫描阀公司的机械扫描阀、A/D数据采集板、PC机以及自编的信号采集及数据处理软件组成风压测量、记录及数据处理系统。图3 风洞模拟的B类大气边界层风速剖面图4风洞模拟的B类大气边界层湍流度剖面2试验模型和试验工况嘉兴市体育场风洞试验模型采用ABS材料压模制成,模型缩尺比为1200。模型的总高度约为0.27m,

4、纵向长约1.4m,横向长约1.3m。由于该体育场具有双轴对称性,因此取四分之一的屋面布置风压测点,屋面上表面布置183个测点,屋面下表面也布置183个测点,共布置366个测点。上表面的测点与下表面对角布置,下表面的测点旋转180后与上表面完全重合,其具体位置如图5所示。图5也给出了试验风向角的定义,在风洞试验时,每个风向角为一个工况,风向角变化间隔为15,试验测压风向角从0360共24个工况。图5 试验模型测点位置和风向角示意图图6 330和180风向屋面的风压分布3数据处理 本次模型试验中各测点风压系数的计算方法系按目前国内外风工程惯用的方法,即按下式计算: CpiPiP/0.5pV (1)

5、式中:Cpi是建筑物表面某测点i的风压系数;Pi是测点i的风压值;是参考点静压力值;是参考点的风速,对于本次试验V9.8m/s,参考高度为风洞高度1m,相当于实物高度200m。由风洞试验得出的i测点位置处的风压计算公式为: iPir (2)Wr为试验参考点所对应的实物上的压力,若引入r高度的风压高度系数zr,则上式为: iPizrw0 (3)式中w0为基本风压,该体育场50年一遇的基本风压取为0.5kN/m。根据荷载规范1的规定,在计算承重结构时,风压标准值可采用下式计算: kzszw (4) 式中z为风振系数,s和z为体型系数和风压高度系数。式(3)中的Wi相当于已经包含了风压高度系数和体型

6、系数,即风压标准值也可以采用下式计算: k,izizpizrw(5)对于围护结构,规范1建议采用下式计算: kgzszw (6)式中gz为阵风系数,但是规范又指出“由于考虑到近地面湍流规律地复杂性,在取得更多资料以前,规范暂时不明确低矮房屋围护结构风荷载地具体规定”。实际上,由于风洞试验时风洞流场已模拟了大气湍流,因此围护结构的风荷载可以采用风洞试验中得到的脉动风压系数来考虑,即Cp=Cpmaxpmeanprms pminpmeanprms 脉动风压系数pmax和pmin相当于已包含了阵风系数gz,因此将式(3)中的风压系数的平均值采用式(7)的脉动值代替即可用来计算围护结构的风荷载标准值。即

7、围护结构的风荷载标准值为:kpzrw (8)在计算中,需考虑脉动风压的最大正值(压力)和最大负值(吸力)。4风压合力的计算由于该体育场屋面属于敞开结构,其上下表面同时受到风荷载作用,因此在设计中,需考虑上下表面的风压差作为风载作用于屋面钢结构。在具体的数据处理过程中,对于平均风压,直接采用上表面测点风压系数的平均值减去对应下表面测点风压系数的平均值作为风压合力系数的平均值。对于脉动风压,采用上下表面的平方和开方法计算合风力系数的均方根值。即采用下面的式子计算:Cpmeanpmean,uppmean,down (9)Cprms(prms,upprms,down)-2(10)式中Cpmean,up

8、和Cpmean,down分别为上、下表面风压系数的平均值;Cprms,up和Cprms,down分别为上、下表面风压系数的均方根值。三、试验结果分析 1大跨屋面钢结构的抗风设计参数 屋面钢结构作为主要承重体系,其风荷载的计算应按照公式(5)来计算。由于体育场为敞开体系,因此采用风压差作为设计值,即按公式(9)来计算风压差系数。分析试验结果,可以发现最大正风压(向下作用)主要出现在屋面的端部,而屋面中央区域无正风压;最大负风压(向上作用)则出现在屋面的中央区域。进一步可得,该屋面结构的最不利风向角为180(最大正压工况)和330(最大负压工况,最大不对称荷载工况)。为了便于结构抗风设计,将该上述

9、两个风向角下各测区的风压值表示于图6中,供设计参考。图中所示的风压值为局部分块风压,只要乘以风振系数即为风压设计的标准值,单位为kN/m。2 屋面围护结构的抗风设计参数对于屋面围护结构的风荷载,应按照公式(8)进行计算。由于体育场为敞开结构,其风压差系数的平均值和脉动值采用公式(9)和(10)进行计算。屋面各位置出现最大正风压差和负风压差的数据见表1,详细数据可参考文献2。表1 考虑脉动时屋面的最大正、负风压差(kN/m)屋面部位最大正风压差最大负风压差中央区域1.4-2.8端部1.8-1.9四、结论 本文以嘉兴市体育场为研究背景,采用风洞试验方法研究了其复杂形体屋面的设计风压值,有以下几点结

10、论:1、本次试验风洞流场的风速剖面和湍流度分布与理论上要求的0.16地貌吻合很好,保证试验结果提供正确的风压。2、 对于像体育场这样的敞开结构,由于上下表面均受到风压作用,因此应该采用风压合力作为的风荷载的设计取值。3、嘉兴市体育场屋盖主体承重结构在计算时,最不利的风向角为180(最大正压工况)和330(最大负压和最大反对称风压工况)。4、在围护结构的设计中,由于规范对低矮房屋的屋面并没有明确的规定,因此宜采用风压脉动值作为围护结构的风荷载标准值。参考文献1GB500092001建筑结构荷载规范2浙江大学土木系, 嘉兴市体育场风洞试验报告, 2003简 讯建筑节能有“章”可循目前,有关发展节能

11、省地型住宅和公共建筑以及推广建筑“四节”的相关法律法规、标准规范和政策措施体系情况基本明了发展节能省地型住宅和公共建筑以及推广建筑“四节”,是目前建设工作的重中之重,为贯彻落实国务院有关要求,做好建设领域的资源节约,建设部日前对部涉及发展节能省地型住宅和公共建筑以及推广建筑“四节”的相关法律法规、标准规范和政策措施体系情况进行了初步的摸底。 根据摸底情况,在法律法规层面,已具备的法律法规有:中华人民共和国城市规划法中有关合理用地、节约用地原则,城市用地分类与规划建设用地标准中规划建设用地标准;正在修订和在编的法律法规有:已完成修改稿的民用建筑节能管理规定,正在研究起草中的建筑节能管理条例。 在标准规范层面,已有的关于建筑“四节”的标准规范有采暖通风和空气调节设计规范、建筑照明设计标准等30部;在编的标准规范有居住建筑节能设计标准、建筑节能工程施工验收规范等32部。 在政策措施层面,已经具备的政策、文件有:建设部与国家计委、经贸委、财政部联合印发的关于实施夏热冬冷地区居住建筑节能设计标准的通知、建设部印发的建筑节能“十五”计划纲要等28部。正在进行的工作有:节能中长期专项规划提出的十大重点节能工程中建筑节能工程的实施方案编制工作,同时配合做好绿色照明工程、政府机构节能工程等实施方案的编制工作;研究起草建筑节能经济激励政策等10项。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 其它相关文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号