高中数学《生活中的优化问题举例》学案1 新人教A版选修1-1

上传人:我**** 文档编号:131638333 上传时间:2020-05-09 格式:DOC 页数:13 大小:421.50KB
返回 下载 相关 举报
高中数学《生活中的优化问题举例》学案1 新人教A版选修1-1_第1页
第1页 / 共13页
高中数学《生活中的优化问题举例》学案1 新人教A版选修1-1_第2页
第2页 / 共13页
高中数学《生活中的优化问题举例》学案1 新人教A版选修1-1_第3页
第3页 / 共13页
高中数学《生活中的优化问题举例》学案1 新人教A版选修1-1_第4页
第4页 / 共13页
高中数学《生活中的优化问题举例》学案1 新人教A版选修1-1_第5页
第5页 / 共13页
点击查看更多>>
资源描述

《高中数学《生活中的优化问题举例》学案1 新人教A版选修1-1》由会员分享,可在线阅读,更多相关《高中数学《生活中的优化问题举例》学案1 新人教A版选修1-1(13页珍藏版)》请在金锄头文库上搜索。

1、3.4 生活中的优化问题举例【成功细节】(2020年重庆市文科20题) 用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?本节主要研究导数在实际生活中的应用,在学习时,我认为应该注意以下几个方面的细节:(1)要细致分析实际问题中各个量之间的关系,正确设定所求最大值或最小值的变量与自变量,把实际问题转化为数学问题,即列出函数解析式,根据实际问题确定函数的定义域;(2要熟练掌握应用导数法求函数最值的步骤,细心运算,正确合理地做答;(3)求实际问题的最值时,一定要从问题的实际意义去考察,不符合实际意义的理论值

2、应予舍去;(4)在实际问题中,有常常仅解到一个根,若能判断函数的最大(小)值在的变化区间内部得到,则这个根处的函数值就是所求的最大(小)值。如,本题主要考查长方体体积的计算以及用导数解决最值问题,可设长方体的宽为x(m),则长为2x(m),高为.故长方体的体积为从而令V(x)0,解得x=0(舍去)或x=1,因此x=1.当0x1时,V(x)0;当1x时,V(x)0,故在x=1处V(x)取得极大值,并且这个极大值就是V(x)的最大值。从而最大体积VV(x)912-613(m3),此时长方体的长为2 m,高为1.5 m.答:当长方体的长为2 m时,宽为1 m,高为1.5 m时,体积最大,最大体积为3

3、 m3。【粗读概括】1.认真阅读教材中的例题,从中提炼解答优化问题的解题步骤.【高效预习】(核心栏目)【关注.思考】1.了解优化问题的类型;2.实际问题中为什么极值点一般就是最值点.【学习细节】(核心栏目)A基础知识一、利用导数解决生活中的优化问题【情景引入】 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具这一节,我们利用导数,解决一些生活中的优化问题【例题1】 海报版面尺寸的设计 学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128dm2,上、下两边

4、各空2dm,左、右两边各空1dm。如何设计海报的尺寸,才能使四周空心面积最小? 【引导】 先建立目标函数,然后利用导数求最值. 解:设版心的高为xdm,则版心的宽为dm,此时四周空白面积为 。 求导数,得。令,解得舍去)。于是宽为。当时,0.因此,是函数的极小值,也是最小值点。所以,当版心高为16dm,宽为8dm时,能使四周空白面积最小。答:当版心高为16dm,宽为8dm时,海报四周空白面积最小。【思考】在课本例1中,“是函数的极小值点,也是最小值点。”为什么?是否还有别的解法?【探究】在实际问题中,由于=0常常只有一个根,因此若能判断该函数的最大(小)值在的变化区间内部得到,则这个根处的极大

5、(小)值就是所求函数的最大(小)值。由课本例1可得,。,。【例题2】 饮料瓶大小对饮料公司利润的影响(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?(2)是不是饮料瓶越大,饮料公司的利润越大?【背景知识】 某制造商制造并出售球型瓶装的某种饮料瓶子的制造成本是 分,其中 是瓶子的半径,单位是厘米。已知每出售1 mL的饮料,制造商可获利 0.2 分,且制造商能制作的瓶子的最大半径为 6cm问题:()瓶子的半径多大时,能使每瓶饮料的利润最大? ()瓶子的半径多大时,每瓶的利润最小?【引导】 先建立目标函数,转化为函数的最值问题,然后利用导数求最值.解:由于瓶子的半径为,所以每瓶饮料

6、的利润是 令 解得 (舍去)当时,;当时,当半径时,它表示单调递增,即半径越大,利润越高;当半径时, 它表示单调递减,即半径越大,利润越低(1)半径为cm 时,利润最小,这时,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值(2)半径为cm时,利润最大【引导】我们已经求出利润和瓶子半径之间的关系式:。图象如图,能否根据它的图象说出其实际意义?【探究】当时,为减函数,其实际意义为:瓶子的半径小于2cm时,瓶子的半径越大,利润越小,半径为cm 时,利润最小;当时,为增函数,其实际意义为:瓶子的半径大于2cm时,瓶子的半径越大,利润越大。特别的,当时,即瓶子的半径为3cm时,饮料的利润与饮料瓶

7、的成本恰好相等, 时,利润才为正值当 时,即瓶子的半径为2cm时,饮料的利润最小,饮料利润还不够饮料瓶子的成本,此时利润是负值。 【例题2】 磁盘的最大存储量问题计算机把数据存储在磁盘上。磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit)。为了保障磁盘的分辨率,磁道之间的宽度必需大于,每比特所占用的磁道长度不得小于。为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。问题:现有一张半径为的磁盘,它

8、的存储区是半径介于与之间的环形区域(1) 是不是越小,磁盘的存储量越大?(2) 为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?解:由题意知:存储量=磁道数每磁道的比特数。 设存储区的半径介于与R之间,由于磁道之间的宽度必需大于,且最外面的磁道不存储任何信息,故磁道数最多可达。由于每条磁道上的比特数相同,为获得最大存储量,最内一条磁道必须装满,即每条磁道上的比特数可达。所以,磁盘总存储量 (1)它是一个关于的二次函数,从函数解析式上可以判断,不是越小,磁盘的存储量越大(2)为求的最大值,计算令,解得当时,;当时,因此时,磁盘具有最大存储量。此时最大存储量为【思考】根据以上三个例题,

9、总结用导数求解优化问题的基本步骤.【总结】(1)认真分析问题中各个变量之间的关系,正确设定最值变量与自变量,把实际问题转化为数学问题,列出适当的函数关系式,并确定函数的定义区间;关键细节 由问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较(2)求,解方程,得出所有实数根;(3)比较函数在各个根和端点处的函数值的大小,根据问题的实际意义确定函数的最大值或最小值。思维拓展:1导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几种类型:(1)与几何(长度、面积、体积等)有关的最值问题;(2)与物理学有关的最值问题

10、;(3)与利润及其成本(效益最大、费用最小等)有关的最值问题;(4)效率最值问题。2.利用导数解决优化问题的基本思路:【例4】10.某旅行社在暑假期间推出如下旅游团组团办法:达到100人的团体,每人收费1000元。如果团体的人数超过100人,那么每超过1人,每人平均收费降低5元,但团体人数不能超过180人,如何组团可使旅行社的收费最多? (不到100人不组团)【解析】先列出问题的文字模型(标准收费数-降低的收费数),再转化为数学模型.【答案】设参加旅游的人数为x,旅游团收费为y则依题意有=1000-5(-100) (100180),令得=150。又, ,所以当参加人数为150人时,旅游团的收费

11、最高,可达112500元。B综合拓展例1 某工厂生产某种产品,已知该产品的月生产量x(t)与每吨产品的价格p(元/t)之间的关系式为:p=24200x2,且生产x t的成本为:R=50000+200x(元).问该产品每月生产多少吨才能使利润达到最大?最大利润是多少?解析:利润=收入成本,列出利润的函数关系式,利用导数解决优化问题.答案: 每月生产吨时的利润为 由解得:或(舍去)因为在内只有一个点使得,故它就是最大值点,且最大值为: ,故它就是最大值点,且最大值为:(元)答:每月生产200吨产品时利润达到最大,最大利润为315万元.例2 已知某商品生产成本C与产量q的函数关系式为C=100+4q

12、,价格p与产量q的函数关系式为求产量q为何值时,利润L最大?分析:利润L等于收入R减去成本C,而收入R等于产量乘价格由此可得出利润L与产量q的函数关系式,再用导数求最大利润解:收入,利润令,即,求得唯一的极值点答:产量为84时,利润L最大例3 甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40 km的B处,乙厂到河岸的垂足D与A相距50 km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3元和5元,问供水站C建在岸边何处才能使水管费用最省?解析:根据题设条件作出图形,分析各已知条件之间的关系,借助图形的特征,合理选择这些条件间的

13、联系方式,适当选定变元,构造相应的函数关系,通过求导的方法或其他方法求出函数的最小值,可确定点C的位置答案: 解法一 根据题意知,只有点C在线段AD上某一适当位置,才能使总运费最省,设C点距D点x km, 则 BD=40,AC=50,BC=又设总的水管费用为y元,依题意有:=3(50x)+5y=3+,令y=0,解得=30在(0,50)上,y只有一个极值点,根据实际问题的意义,函数在=30(km)处取得最小值,此时AC=50=20(km)供水站建在A、D之间距甲厂20 km处,可使水管费用最省.解法二:设BCD=,则BC=,CD=, 设总的水管费用为f(),依题意,有()=3(5040cot)+

14、5=150+40()=40令()=0,得cos=根据问题的实际意义,当cos=时,函数取得最小值,此时sin=,cot=,AC=5040cot=20(km),即供水站建在A、D之间距甲厂20 km处,可使水管费用最省._x_x_60_60xx例4 在边长为60 cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?解析:先建立起目标函数,再求最值.答案 解法一:设箱底边长为xcm,则箱高cm,得箱子容积 令 0,解得 x=0(舍去),x=40, 并求得V(40)=16 000由题意可知,当x过小(接近0

15、)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm3解法二:设箱高为xcm,则箱底长为(60-2x)cm,则得箱子容积(后面同解法一,略)由题意可知,当x过小或过大时箱子容积很小,所以最大值出现在极值点处事实上,可导函数、在各自的定义域中都只有一个极值点,从图象角度理解即只有一个波峰,是单峰的,因而这个极值点就是最值点,不必考虑端点的函数值例5圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?解析:转化为数学问题就是,圆柱的体积是一个定值时,求表面积最小时,高与半径的比值。答案: 设圆柱的高为h,底半径为R,则表面积S=2Rh+2R2由V=R2h,得,则S(

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 试题/考题 > 高中试题/考题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号