高等数学梯度计算ppt课件

上传人:资****亨 文档编号:130108038 上传时间:2020-04-25 格式:PPT 页数:35 大小:860.50KB
返回 下载 相关 举报
高等数学梯度计算ppt课件_第1页
第1页 / 共35页
高等数学梯度计算ppt课件_第2页
第2页 / 共35页
高等数学梯度计算ppt课件_第3页
第3页 / 共35页
高等数学梯度计算ppt课件_第4页
第4页 / 共35页
高等数学梯度计算ppt课件_第5页
第5页 / 共35页
点击查看更多>>
资源描述

《高等数学梯度计算ppt课件》由会员分享,可在线阅读,更多相关《高等数学梯度计算ppt课件(35页珍藏版)》请在金锄头文库上搜索。

1、 第七节方向导数与梯度 一 方向导数 二 梯度 一 问题的提出 一块长方形的金属板 受热 产生如图温度分布场 设一个小虫在板中逃生至某 问该虫应沿什么方向爬行 才能最快到达凉快的地点 处 问题的实质 应沿由热变冷变化最剧烈的 方向爬行 需要计算场中各点沿不同方向的温度变化率 从而确定出温度下降的最快方向 引入两个概念 方向导数和梯度 方向导数问题 梯度问题 讨论函数在一点P沿某一方向的变化率问题 二 方向导数 当沿着趋于时 是否存在 记为 的方向导数为 方向导数是单侧极限 而偏导数是双侧极限 原因 证明 由于函数可微 则增量可表示为 方向导数的存在及计算公式 那末函数在该点沿任意方向l的方向导

2、数都存在 且有 计算公式 故有方向导数 两边同除以 得到 故x轴到方向l的转角 解 方向l即为 所求方向导数 解 由方向导数的计算公式知 1 最大值 2 最小值 3 等于零 例2求函数 的方向导数 并问在怎样的方向上此方向导数有 故 方向导数达到最大值 方向导数达到最小值 方向导数等于0 推广 三元函数方向导数的定义 对于三元函数 它在空间一点 沿着方向l的方向导数 可定义为 其中 方向导数的计算公式 解 令 故 方向余弦为 求函数 处的指向外侧的法向量 故 三 梯度 设 是方向l上的单位向量 当时 有最大值 其中 由方向导数公式知 结论 x轴到梯度的转角的正切为 函数在某点的梯度是这样一个向

3、量 它的方向与取得最大方向导数的方向一致 而它的模为方向导数的最大值 梯度的模为 在几何上表示一个曲面 曲面被平面所截 得曲线 它在xoy面上投影方程 等高线 称为等值线 等值线 几何上 称为等高线 例如 等值线 上任一点处的一个法向量为 表明 梯度方向与等值线的一个法线方向相同 它的指向为从数值较低的等值线指向较高的等 梯度的模就等于函数在这个法线方向的 方向导数 值线 问题 上山时 如何选择最快的方向 计算方法课程中的一种计算策略 瞎子下山法 类似于二元函数 此梯度也是一个向量 其方向与取得最大方向导数的方向一致 其模为方向导数的最大值 梯度的概念可以推广到三元函数 解 由梯度计算公式得 故 则在 处梯度为 例4求函数 在点 处的梯度 并问在何处梯度为零 一 方向导数 注意方向导数与一般所说偏导数的区别 小结 1 定义 2 计算公式 二 梯度 注意梯度是一个向量 定义 方向 x轴到梯度的转角的正切 模 三 方向导数与梯度的关系 方向与取得最大方向导数的方向一致 模为方向导数的最大值 梯度 其中 思考题 问函数在某点处沿什么方向的方向导数最大 答 梯度方向 答 作业 P 51习题8 7 1 4 7 8 10 练习题 练习题答案 此课件下载可自行编辑修改 此课件供参考 部分内容来源于网络 如有侵权请与我联系删除 感谢你的观看

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号