PLC锅炉PID控制设计毕业论文

上传人:l**** 文档编号:129642663 上传时间:2020-04-23 格式:DOC 页数:38 大小:1.51MB
返回 下载 相关 举报
PLC锅炉PID控制设计毕业论文_第1页
第1页 / 共38页
PLC锅炉PID控制设计毕业论文_第2页
第2页 / 共38页
PLC锅炉PID控制设计毕业论文_第3页
第3页 / 共38页
PLC锅炉PID控制设计毕业论文_第4页
第4页 / 共38页
PLC锅炉PID控制设计毕业论文_第5页
第5页 / 共38页
点击查看更多>>
资源描述

《PLC锅炉PID控制设计毕业论文》由会员分享,可在线阅读,更多相关《PLC锅炉PID控制设计毕业论文(38页珍藏版)》请在金锄头文库上搜索。

1、. . .PLC锅炉PID控制设计毕业论文目录前言1第1章 供暖锅炉改造设计思路21.1 供暖锅炉改造设计要求21.2 锅炉系统的结构21.3 整体方案选择3第2章 变频调速在供暖锅炉控制中的应用42.1 变频调速基本原理42. 2 变频调速在供暖锅炉系统中的应用5第3章 锅炉控制系统总体设计63. 1 系统功能分析63.2 总体设计思路63.3 系统结构7第4章 系统硬件设计84.1 可编程控制器PLC的选型84.2 PLC配置94.2.1 PLC的开关量输入、输出点94.2.2 PLC的模拟量输入、输出点114.3 I/O接线114.4 变频器配置114.4.1 变频器输入输出接口114.

2、5 传感器与变送器134.5.1 压力变送器工作原理134.5.2 压力变送器选型134.5.3 温度传感器选型13第5章 系统构成165.1 补水泵控制系统165.1.1补水泵系统方案图165.2 循环泵控制系统185.3 鼓风机控制系统19第6章 PID控制原理206.1 PID算法的实现20第7章 程序设计247.1主程序设计247.2 子程序设计24结论33谢辞34参考文献35外文资料翻译37.参考资料. 第1章 供暖锅炉改造设计思路1.1 供暖锅炉改造设计要求 (1)PLC容量和性能要与任务适应,PLC满足实时控制的要求;(2)确定所需PLC传感器变频器的型号、PLC接线图和梯形图;

3、(3)要有PLC的I/O接口地址分配表(4)具有手动/自动转换、在线监控及在现场调试、驱动电机过热保护;1.2 锅炉系统的结构 锅炉控制系统,一般由以下几部分组成,即由锅炉本体、补水箱、循环水泵、补水泵等部分组成。补水箱的水由两路提供。一路是来自用户网通过热交换形成的冷凝水。一路是来自自来水管的自来水。当回水不足以维持供热所需的水时。启动补水泵,用补水箱的水,加入到锅炉。图1-1 总体系统结构图1.3 整体方案选择以往供暖锅炉系统中带有循环泵、补水泵等水泵类的设备,通常是根据不同的生产需求往往采用调整阀、回流阀、截止阀等节流设备进行流量、压力、水位等信号的控制。这样,不仅造成大量的能源浪费,管

4、路、阀门等密封性能的破坏,还加速了阀体的磨损,严重时损坏设备而影响生产。目前,风机、泵类设备多数采用异步电动机直接驱动的方式运行,存在启动电流大、机械冲击、电气保护特性差等缺点。不仅影响设备使用寿命,而且当负载出现机械故障时不能瞬间动作保护设备,时常出现泵损坏同时电机也被烧毁的现象。对于如何供暖锅炉的基本功能和它存在的缺陷等问题提出两种改造方案。第一种就是利用单片机进行控制中心的,但是由于单片机工作状态的不稳定性,抗干扰能力比较差。所以不在此处选用。第二种就是用可编程控制器PLC进行改造,把原来的继电接触式电控系统改造为PLC控制。不仅可以消除掉它原来存在的所有缺陷,而且增加了故障检修功能,可

5、以在发生故障的部位进行报警。第二个方案用可编程控制器PLC对原来的继电接触式电控系统进行技术改造,改造后可以减少强电元气件数目,而且增加了一些故障自诊断功能。提高了系统的稳定性,可靠性,安全性。使电气控制系统的工作更加灵活,更容易维修,更能适应经常变动的工艺条件。因此我们选择第二种方案。第2章 变频调速在供暖锅炉控制中的应用2.1 变频调速基本原理目前,随着大规模集成电路和微电子技术的发展,变频调速技术已经发展为一项成熟的交流调速技术。变频调速器作为该技术的主要应用产品经过几代技术更新,己日趋完善,能够适应较为恶劣的工业生产环境,目能提供较为完善的控制功能,能满足各种生产设备异步电动机调速的要

6、求。变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系水泵多配用交流异步电机拖动,当电机转速降低时,既可节约能量,经济效益十分显著。由异步电动机的转速公式: (1)式中,异步电动机的同步转速r/min; 异步电动机转子的转速r/min; 电动机的磁极对数; 电源频率,电动机定子电压频率; 转速差; (2)由公式可见改变电动机极对数P、改变转速差S及改变电源频率f都可以改变转速。通过改变电动机工作电源频率达到改变电机转速的目的。变频器就是基于上述原理采用交-直-交电源变换技术,集电力电子、微电脑控制等技术于一身的综合性电气产品。实现调频调压的电路有两种:交-直-交变频器,交-交变

7、频器见图2。上面是交-直-交变频器,下面是交-交变频器。图2-1 变频器种类(1)交-直-交变频器它是由三个环节组成:可控硅整流电路,其作用是将电压、定频率的交流电路变为电压可调的直流电;可控硅逆变电路,其作用是将整流电路输出的直流电变换为频率可调的交流电;滤波环节,它在整流电路和逆变电路之间,一般是利用无电源电容或电抗器对整流后的电压或电流进行滤波。(2)交-交变频器它是由两组反并联的整流电路组成,直接将电网的交流电通过变频电路同时调节电压和频率,变成电压和频率可调的交流电输出,交-交变频器由于直接交换,减少换流电路,减少损耗,效率高,波型好,但调速围小,控制线路复杂,功率因数低,目前较少采

8、用2。2. 2 变频调速在供暖锅炉系统中的应用由于变频调速可以实现电机无级调速,具有异步电机调压调速和串级调速无可比拟的优越性,在锅炉系统中得到广泛的应用。变频调速在供热锅炉系统中主要应用在风机调速和水泵调速。第3章 锅炉控制系统总体设计 3. 1 系统功能分析 本文针对锅炉进行变频改造,设计一套基于变频调速技术的锅炉系统。根据要求,并结合锅炉控制的发展趋势,本系统具备如下功能:(1)远程/就地控制系统具有远程控制和就地控制两种控制功能。通过操作台和可编程控制器对锅炉系统中的鼓风机、引风机、炉排电机、循环泵和补水泵实现远程控制。同时,也可直接操作变频控制柜,实现就地控制。(2)单动/联动模式本

9、系统工作在单动/联动两种工作模式下。单动和联动模式下均可实现远程/就地控制和参数设定,但单动模式下,需人工根据气候、负荷的变化设定鼓风机、循环泵和补水泵等电机的转速,相当于“开环控制”;联动模式下,操作人员只需根据室温度和室外温度的变化设定锅炉的出水温度和炉膛负压等参数,系统自动地调节电机的转速,减少了人工干预,提高了自动化水平。(3)检测功能系统通过安装在锅炉现场的各类传感器,可检测出水温度、回水温度、出水流量、回水压力、出水压力、补水流量、循环水泵压力等参数,并可以将这些数据通过变送器传送到可编程控制器处理,所有参数均可在操作台显示上显示出来。(4)超温超压报警按规定,锅炉控制系统必须包含

10、超温超压报警功能,当系统中的温度、压力等信号超过上下限时,必须提示报警信息,对某些重要参数,还设置了报警联动功能,即超限时停炉或停泵处理。3.2 总体设计思路针对锅炉房的现状,本系统对锅炉房的鼓风机、循环泵、补水泵等设备进行变频改造。每台鼓风机配置一台变频器,共2台。对于4台循环泵,给其中两台容量较大的电机配置两台变频器,另外容量较小的电机不配备变频器,作为备用。对于4台补水泵,也配置两台变频器,给其中两台容量较大的电机配置两台变频器,另外容量较小的电机不配备变频器。所有变频器均安装在变频控制柜,置于变频控制室,操作变频控制柜的面板,可实现就地控制。PLC采用西门子公司S7-200系列PLC,

11、通过1/O模块控制控制柜所有断路器、接触器和继电器等开关设备,以实现远程控制。如果PLC系统出现故障,可直接在控制柜上通过控制面板进行启/停控制,原有的手动控制部分(操作台部分)均予保留,一旦变频控制系统出现故障,可自动或手动转为原有的手动方式控制,从而可避免造成供暖中断,切实保证供暖正常。3.3 系统结构本系统属于热水锅炉供暖系统,主要通过热水循环给用户供暖,一般分为燃烧控制系统、循环泵控制系统和补水泵控制系统。本系统采用集中控制,分为三部分,系统结构框图如图3所示。图3-1 系统结构框图第4章 系统硬件设计4.1 可编程控制器PLC的选型由于供暖锅炉自动控制系统控制设备相对较少,因此PLC

12、选用德国Siemens公司的S7-200型。S7-200型PLC的结构紧凑,价格低廉,具有较高的性能/价格比,广泛适用于一些小型控制系统。Siemens公司的PLC具有可靠性高,可扩展性好,又有较丰富的通信指令,且通信协议简单等优点。根据控制系统实际所需端子数目,考虑PLC端子数目要有一定的预留量,为以后新设备的介入或设备调整留有余地,因此选用的S7-200型PLC的主模块为CPU224XPCN,其开关量输出(DQ)为10点,输出形式为AC220V继电器输出;开关量输入为14点,输入形式为+24V直流输入。由于实际的开关量输出有26点,所以需要扩展,扩展模块选择的是1个EM223CN型模块,该

13、模块有16个开关量输出点,输出形式为AC220V继电器输出,开关量输入为16点,输入形式为+24V直流输入。此外,为了方便的将管网压力信号、电机频率信号和同相比较信号传输给PLC。经比较计算后转换为相应的控制信号,选择了EM235CN模拟量扩展模块。该模块有4个模拟输入(AIW),1个模拟输出(AQW)信号通道。输入输出信号接入端口时能够自动完成了A/D的转换,标准输入信号能够转换成一个字长(16bit)的数字信号;输出信号接出端口时能够自动完成D/A的转换,一个字长(16bit)的数字信号能够转换成标准输出信号。EM235模块可以针对不同的标准输入信号,通过DIP开关进行设置。系统 PLC的

14、选型包括一个CPU224CN主模块,1个EM223CN扩展模块,3个EM235模拟量扩展模块。如此PLC总共有30个数字信号输入,26个数字信号输出,以及4个模拟输入信号,4个模拟输出信号。输入和输出均有余量,可以满足日后系统扩充的要求3。表4-1 S7-200的规格系列连接方法工作电压输入类型输出类型程序容量I/O点型号主控单元S7-200端子型220V AC24VDC继电器12K24点14I/10OCPU 224XP CN数字量扩展单元S7-200端子型24VDC24VDC继电器32点16I/16OEM223 CN模拟量扩展单元S7-200端子型24VDC5点4I/1OEM235 CN4.2 PLC配置4.2.1 PLC的开关量输入、输出点PLC的输入、输出点数的确定根据控制系统设计要求和所需控制的现场设备数量加以确定。系统采用分组运行的方式,把l#水泵电机和2#水泵电机组成第一组;把3#水泵电机和4#水泵电机组成第二组。两组采用循环使用的方式运行,自动控制系统可以根据运行时间的长短来调整选择不同的机组运行。要求控制的现场设备有两台电机接触器的动作,变频器的控制端子,热继电器输入及报警。PLC输入输出端口地址的分配如下表2所示。表4-2 I/O分配I名称输入O名称输出I0.0SB1手动/自动/停止选择Q0.0KM11#补水泵变频运行I0.1SB2补水

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 学术论文 > 毕业论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号