《江苏东台高中历史第1章算法初步1.1算法的初步导学案苏教必修3 1.doc》由会员分享,可在线阅读,更多相关《江苏东台高中历史第1章算法初步1.1算法的初步导学案苏教必修3 1.doc(3页珍藏版)》请在金锄头文库上搜索。
1、1.1算法的含义主备人: 学生姓名: 得分: 学习目标:1. 通过实例体会算法的思想,了解算法的含义2. 能按步骤用自然语言写出简单问题的算法过程学习难点:1. 了解算法的含义2. 写出简单问题的算法过程学习方法:自主预习,合作探究,启发引导1、 导入亮标探索1电视节目中,有一种有趣的“猜数”游戏: 现有一商品,价格在08000元之间,釆取怎样的策略才能在较短的时间内说出正确的答案呢?如果从报1开始若不对再报2若不对再报3直到报到正确答案. 这样行不行? 这是不是最好的策略?调整策略:第一步:报“4000;”;第二步:若答高了,就报“2000”;否则报“6000”;第三步:重复第二步的报数方法
2、,直至得到正确结果.结论:我们做任何一件事,都是在一定的条件下按某种顺序执行的一系列操作。解决数学问题也常常如此。例如:用加减消元法解二元一次方程组时,就可以按照某一程序进行操作;用配方法解一元二次方程,也是按一定程序操作的。将上述程序换成计算机能识别的语言后,就能借助计算机极大地提高解决问题的速度。因此探索解决问题的统一程序的思想是十分重要的,对一类问题的机械的、统一的求解程序就是算法。面对一个需要解决的问题 如何设计解决问题的操作步骤? 怎样用数学语言描述这些操作序列?二、自学检测1、求13579的算法的S1是35,得15,S2是将S1中的运算结果15与7相乘,得105,S3是_2完成解方
3、程2x70的算法过程:第一步移项,得_;第二步系数化为1,得_3已知算法如下:第一步输入x;第二步若x0,则ylog2x;否则,y2x;第三步输出y.若输入的x的值分别为1,0,1时,输出的结果分别为_,_,_三、合作探究例1 给出求1+2+3+4+5的一个算法.注:可以有不同的算法,算法一、算法二见课本思考:下列算法能解决问题吗?第一步:使s=1;第二步:使n=2;第三步:使s=s+n ;第四步:使n=n+1第五步:若n5则返回第三步,否则输出s例2 解二元一次方程组:分析:解二元一次方程组的主要思想是消元的思想,有代入消元和加减消元两种消元的方法,下面用加减消元法写出它的求解过程.解: 第
4、一步: - 2,得: 5y=3; 第二步:解得 ; 第三步:将代入,得 .思考:你能用代入消元法设计算法吗?(选讲)例3一位商人有9枚银元,其中有1枚略轻的是假银元你能用天平(不用砝码)将假银元找出来吗?四、展示点评算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.五、检测清盘1.家中配电盒至电视机的线路断了,检测故障的算法中,为了使检测的次数尽可能少,第一步检测的序号是( )(1). 靠近电视的一小段,开始检查 (2). 电路中点处检查(3). 靠近配电盒的一小段开始检查 (4). 随机挑一段检查2.求1357911的值,写出其算法。3. 写出判断一个数是奇数还是偶数的算法。4. 写出解二元一次方程组:的算法。3