端粒 Telomeres 定义 端粒是染色体末端的DNA重复序列 端粒是.doc

上传人:marr****208 文档编号:127929533 上传时间:2020-04-07 格式:DOC 页数:11 大小:76.50KB
返回 下载 相关 举报
端粒 Telomeres 定义 端粒是染色体末端的DNA重复序列 端粒是.doc_第1页
第1页 / 共11页
端粒 Telomeres 定义 端粒是染色体末端的DNA重复序列 端粒是.doc_第2页
第2页 / 共11页
端粒 Telomeres 定义 端粒是染色体末端的DNA重复序列 端粒是.doc_第3页
第3页 / 共11页
端粒 Telomeres 定义 端粒是染色体末端的DNA重复序列 端粒是.doc_第4页
第4页 / 共11页
端粒 Telomeres 定义 端粒是染色体末端的DNA重复序列 端粒是.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《端粒 Telomeres 定义 端粒是染色体末端的DNA重复序列 端粒是.doc》由会员分享,可在线阅读,更多相关《端粒 Telomeres 定义 端粒是染色体末端的DNA重复序列 端粒是.doc(11页珍藏版)》请在金锄头文库上搜索。

1、端粒Telomeres 定义端粒是染色体末端的DNA重复序列。端粒是染色体末端的一种特殊结构,在正常人体细胞中,可随着细胞分裂而逐渐缩短。把端粒当作一件绒线衫袖口脱落的线段,绒线衫像是结构严密的DNA,排在线上的DNA决定人体性状。它们决定人头发的直与曲,眼睛的蓝与黑,人的高与矮等等,甚至性格的暴躁和温和。 功能稳定染色体末端结构,防止染色体间末端连接,并可补偿滞后链5末端在消除RNA引物后造成的空缺。组织培养的细胞证明,端粒在决定动植物细胞的寿命中起着重要作用,经过多代培养的老化细胞端粒变短,染色体也变得不稳定。细胞分裂次数越多,其端粒磨损越多,寿命越短。 通常情况下,运动加速细胞的分裂,运

2、动量越大,细胞分裂次数越多,因此寿命越短。所以体育运动一定要适可而止。组成端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5到3 方向的链富含 GT。在酵母和人体中,端粒序列分别为C13A/TG13和TTAGGG/CCCTAA,并有许多蛋白与端粒DNA结合。端粒DNA主要功能有:第一,保护染色体不被核酸酶降解;第二,防止染色体相互融合;第三,为端粒酶提供底物,解决DNA复制的末端隐缩,保证染色体的完全复制。端粒、着丝粒和复制原点是染色体保持完整和稳定的三大要素。同时,端粒又是基因调控的特殊位点, 常可抑制位于端粒附近基因的转录活性(称为端粒的位置效应,TPE)。在大多真核生物中,端

3、粒的延长是由端粒酶催化的,另外,重组机制也介导端粒的延长。 发现之旅科学家们在寻找导致细胞死亡的基因时,发现了一种叫端粒的存在于染色体顶端的物质。端粒本身没有任何密码功能,它就像一顶高帽子置于染色体头上。在新细胞中,细胞每分裂一次,染色体顶端的端粒就缩短一次,当端粒不能再缩短时,细胞就无法继续分裂了。这时候细胞也就到了普遍认为的分裂100次的极限并开始死亡。因此,端粒被科学家们视为“生命时钟”。 科学家由此又开始研究精子和癌细胞内的染色体端粒是如何长时间不被缩短的原因。1984年,分子生物学家在对单细胞生物进行研究后,发现了一种能维持端粒长度的端粒酶,并揭示了它在人体内的奇特作用:除了人类生殖

4、细胞和部分体细胞外,端粒酶几乎对其他所有细胞不起作用,但它却能维持癌细胞端粒的长度,使其无限制扩增。早在30年代,缪勒(Muller)和麦克林托克(Meclintock)等就已发现了端粒结构的存在。1978年,四膜虫的端粒结构首先被测定。1990年起,凯文哈里(Calvin Harley)就把端粒与人体衰老挂上了钩:第一、细胞愈老,其端粒长度愈短;细胞愈年轻,端粒愈长,端粒与细胞老化有关系。衰老细胞中的一些端粒丢失了大部分端粒重复序列。当细胞端粒的功能受损时,就出现衰老,而当端粒缩短至关键长度后,衰老加速,临近死亡。第二、正常细胞端粒较短。细胞分裂会使端粒变短,分裂一次,缩短一点,就像磨损铁杆

5、一样,如果磨损得只剩下一个残根时,细胞就接近衰老。细胞分裂一次其端粒的DNA丢失约30200bp(碱基对)。第三、研究发现,细胞中存在一种酶,它合成端粒。端粒的复制不能由经典的DNA聚合酶催化进行,而是由一种特殊的逆转录酶端粒酶完成。正常人体细胞中检测不到端粒酶。一些良性病变细胞,体外培养的成纤维细胞中也测不到端粒酶活性。但在生殖细胞、睾丸、卵巢、胎盘及胎儿细胞中此酶为阳性。令人注目的发现是,恶性肿瘤细胞具有高活性的端粒酶,端粒酶阳性的肿瘤有卯艇癌、淋巴瘤、急性白血病、乳腺癌、结肠癌、肺癌等等。人类肿瘤中广泛地存在着较高的端粒酶耥端挝酶作为肿瘤治疗的靶点,是当前较受关注的热点之一。 其他与寿命

6、有关的基因也在被不断地发现,它们的工作原理与端粒相似。科学家们不但希望能找到人体内所有的生命时钟,更希望找到拨慢时钟的方法。目前很多植物的端粒酶已被提取出,许多国家的研究组正在从事相关课题的研究。有观点声称,即使可保护端粒在分裂中不被降解的药物被发明,其对于生命常青的意义也有待商榷,应为当一个老年人被植入年轻的端粒后,其身体是否能接受还是一个问题凭借“发现端粒和端粒酶是如何保护染色体的”这一成果,揭开了人类衰老和罹患癌症等严重疾病的奥秘的三位美国科学家(美国加利福尼亚旧金山大学的伊丽莎白布莱克本(Elizabeth Blackburn)、美国巴尔的摩约翰霍普金斯医学院的卡罗尔格雷德(Carol

7、 Greider)、美国哈佛医学院的杰克绍斯塔克(Jack Szostak)。)获得2009年的诺贝尔生理学或医学奖。 相关遗传病在染色体亚端粒区存在高度同源性序列在减数分裂过程中发生异常同源重组,而导致该区域发生微小的缺失、重复或染色体相互易位,称为染色体亚端粒区重组异常。该疾病患者主要表现为不同程度的智力低下、伴有生长发育迟缓和各器官、系统的畸形。目前研究发现由此机制导致的智力低下约占智力低下患者的三体综合征。图片说明:端粒就像DNA的帽子,保护DNA重要信息不丢失(图片来源:ALFRED PASIEKA/ SCIENCE PHOTO LIBRARY)端粒学说端粒学说由Olovnikov提

8、出,认为细胞在每次分裂过程中都会由于DNA聚合酶功能障碍而不能完全复制它们的染色体,因此最后复制DNA序列可能会丢失,最终造成细胞衰老死亡。 端粒是真核生物染色体末端由许多简单重复序列和相关蛋白组成的复合结构,具有维持染色体结构完整性和解决其末端复制难题的作用。端粒酶是一种逆转录酶,由RNA和蛋白质组成,是以自身RNA为模板,合成端粒重复序列,加到新合成DNA链末端。在人体内端粒酶出现在大多数的胚胎组织、生殖细胞、炎性细胞、更新组织的增生细胞以及肿瘤细胞中。正因如此,细胞每有丝分裂一次,就有一段端粒序列丢失,当端粒长度缩短到一定程度,会使细胞停止分裂,导致衰老与死亡。 大量实验说明端粒、端粒酶

9、活性与细胞衰老及永生有着一定的联系。第一个提供衰老细胞中端粒缩短的直接证据是来自对体外培养成纤维细胞的观察,通过对不同年龄供体成纤维细胞端粒长度与年龄及有丝分裂能力的关系观察到随着增龄,端粒的长度逐渐变短,有丝分裂的能力明显渐渐变弱;Hastie发现结肠端粒限制性片段的长度随供体年龄增加逐渐缩短,平均每年丢失33bp的重复序列;植物中不完整的染色体在受精作用中得以修复,而不能在已经分化的组织中修复,这在较为高等的真核生物中也证实了体细胞中端粒酶的活性受抑制;精子的端粒要比体细胞长,体细胞缺失端粒酶活性就会逐渐衰老,而生殖细胞系的端粒却可以维持其长度;转化细胞能够通过端粒酶的活性完全复制端粒以得

10、永生。 但是许多问题用端粒学说还不能解释。体细胞端粒长度与有丝分裂能力呈正比,这一点实验已经证实了,而不同的体细胞其有丝分裂能力是不尽相同的,胃肠黏膜细胞的分裂增殖速度就比较快,神经细胞分裂的速度就比较慢。曾有人就不同年龄供体角膜内皮细胞的端粒长度进行研究发现角膜内皮细胞内端粒长度长期维持在一个较高的水平,而端粒酶却不表达。另外,Kippling发现,鼠的端粒比人类长近5-10倍,寿命却比人类短的多。这些都提示体细胞端粒长度与个体的寿命及不同组织器官的预期寿命并非一致。生殖细胞的端粒酶活性长期维持较高的水平却不会象肿瘤那样无限制分裂繁殖;端粒长度由端粒酶控制,那何种因素控制端粒酶呢?生殖细胞内

11、端粒酶活性较高,为什么体细胞中没有较高的端粒酶活性。看来端粒的长度缩短是衰老的原因还是结果尚需进一步研究。2009年,诺贝尔瑞典卡罗林斯卡医学院将诺贝尔奖生理学或医学奖授予美国加利福尼亚旧金山大学的伊丽莎白布莱克本(ElizabethBlackburn)、美国巴尔的摩约翰霍普金斯医学院的卡罗尔-格雷德(CarolGreider)、美国哈佛医学院的杰克绍斯塔克(JackSzostak)以及霍华德休斯医学研究所,以表彰他们发现了端粒和端粒酶保护染色体的机理。端粒、端粒酶与肿瘤 作者:佚名时间:2007-11-22 11:17:00来源:论文天下论文网-端粒(即染色体末端)的发现已有很长的历史,但对

12、其结构、功能、合成及其重要意义的认识,近年来有了很大进展。本文就端粒、端粒酶的研究进展以及他们与肿瘤的关系综述如下。 一、端粒 (一)端粒的结构 端粒是位于染色体3末端的一段富含G的DNA重复序列,端粒和端粒结合蛋白组成核蛋白复合物,广泛存在于真核生物细胞中,具有特殊的功能。不同种类细胞的端粒重复单位不同,大多数长58bp,由这些重复单位组成的端粒,突出于其互补链1216个核苷酸内1。人类端粒由5TTAGGG3的重复单位构成,长度在515kb范围1,2。与端粒特异性结合的是端粒结合蛋白,迄今为止,只在少数生物中确定了端粒结合蛋白的结构及表达基因,然而端粒结构与功能的保守性表明,这些端粒结合蛋白

13、的特性可能普遍适用于其他真核生物。Chong等3在人类细胞中发现了一种端粒结合蛋白,但人类染色体末端的DNA-蛋白复合体的结构还不清楚。 (二)端粒的功能 端粒高度的保守性表明,端粒具有非常重要的作用。其主要功能包括: 1.保护染色体末端:真核生物的端粒DNA-蛋白复合物,如帽子一般,保护染色体末端免于被化学修饰或被核酶降解,同时可能还有防止端粒酶对端粒进行进一步延伸的作用1。改变端粒酶的模板序列将导致端粒的改变,从而诱导细胞衰老和死亡4。 2.防止染色体复制时末端丢失:细胞分裂、染色体进行半保留复制时,存在染色体末端丢失的问题5。随着细胞的不断分裂,DNA丢失过多,将导致染色体断端彼此发生融

14、合,形成双中心染色体、环状染色体或其他不稳定形式。端粒的存在可以起到缓冲保护的作用,从而防止染色体在复制过程中发生丢失或形成不稳定结构1。 3.决定细胞的寿命:染色体复制的上述特点决定了细胞分裂的次数是有限的,端粒的长度决定了细胞的寿命,故而被称为“生命的时钟”6。 4.固定染色体位置:染色体的末端位于细胞核边缘,人类端粒DNA和核基质中的蛋白相互作用,以TTAGGG结构附着于细胞核基质(包括nuclear envelope和internal protein)3。 (三)端粒的长度 端粒的长度在不同的细胞之间存在着差异。胚胎细胞和生殖细胞端粒的长度大于体细胞7。体外培养细胞端粒的长度随着细胞逐

15、代相传而缩短,每复制一代即有50200nt的DNA丢失,端粒丢失到一定程度即失去对染色体的保护作用,细胞随之发生衰老和死亡。所以,通过测定端粒的长度可以预测细胞的寿命6。人体细胞端粒的长度不一,存在着个体差异,随着年龄的增长,端粒每年减少约1540 nt7,最终细胞衰老。胚胎细胞和生殖细胞端粒的长度不随着细胞分裂次数的增加而缩短,具有无限分裂的能力,其原因就在于端粒酶的存在7。 二、端粒酶 (一)端粒酶的结构和功能 端粒酶是由端粒酶RNA和蛋白质组成的核糖核蛋白酶,通过识别并结合于富含G的端粒末端,以自身为模板,逆转录合成端粒1。 1995年,Junli等8克隆了人类端粒酶RNA基因,在长约450个碱基的人端粒酶RNA(hTR)序列中,有一段长11个核苷酸的区域(5-CUAACCCUAAC-3),与人端粒序列(TTAGGG)n互补,发生在该模板区域的hTR突变将导致端粒酶功能的改变。 端粒酶蛋白质成分的分离十分困难,直到1995年,Greider等9才纯化并克隆了四膜虫端粒酶的两个多肽成分,即p80和p95。1997年,人们克隆并描述了两种人类端粒酶蛋白TP 1(telomerase associated protein 1)10

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 其它相关文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号