2020年高考物理电学部分典型题例析与探秘 人教版

上传人:我**** 文档编号:127320032 上传时间:2020-04-01 格式:DOC 页数:21 大小:220KB
返回 下载 相关 举报
2020年高考物理电学部分典型题例析与探秘 人教版_第1页
第1页 / 共21页
2020年高考物理电学部分典型题例析与探秘 人教版_第2页
第2页 / 共21页
2020年高考物理电学部分典型题例析与探秘 人教版_第3页
第3页 / 共21页
2020年高考物理电学部分典型题例析与探秘 人教版_第4页
第4页 / 共21页
2020年高考物理电学部分典型题例析与探秘 人教版_第5页
第5页 / 共21页
点击查看更多>>
资源描述

《2020年高考物理电学部分典型题例析与探秘 人教版》由会员分享,可在线阅读,更多相关《2020年高考物理电学部分典型题例析与探秘 人教版(21页珍藏版)》请在金锄头文库上搜索。

1、2020年高考物理电学部分典型题例析与探秘 图11、如图1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板的中央各有小孔M、N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好为零,然后按原路径返回。若保持两板间的电压不变,则:A. 若把A板向上平移一小段距离,质点自P点下落仍能返回。B. 若把B板向下平移一小段距离,质点自P点下落仍能返回。C. 若把A板向上平移一小段距离,质点自P点下落后将穿过N孔继续下落。D. 若把B板向下平移一小段距离,质点自P点下落后将穿过N孔继续下落。分析与解:当开关S一直闭合时

2、,A、B两板间的电压保持不变,当带电质点从M向N运动时,要克服电场力做功,W=qUAB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qUAB若把A板向上平移一小段距离,因UAB保持不变,上述等式仍成立,故沿原路返回,应选A。若把B板下移一小段距离,因UAB保持不变,质点克服电场力做功不变,而重力做功增加,所以它将一直下落,应选D。由上述分析可知:选项A和D是正确的。想一想:在上题中若断开开关S后,再移动金属板,则问题又如何?(选A、B)。图2图2(b)2、两平行金属板相距为d,加上如图2(b)所示的方波形电压,电压的最大值为U0,周期为T。现

3、有一离子束,其中每个离子的质量为m,电量为q,从与两板等距处沿着与板平行的方向连续地射入两板间的电场中。设离子通过平行板所需的时间恰为 T(与电压变化周期相同),且所有离子都能通过两板间的空间打在右端的荧光屏上。试求:离子击中荧光屏上的位置的范围。(也就是与O点的最大距离与最小距离)。重力忽略不计。分析与解:2c各个离子在电场中运动时,其水平分运动都是匀速直线运动,而经过电场所需时间都是T,但不同的离子进入电场的时刻不同,由于两极间电压变化,因此它们的侧向位移也会不同。当离子在t=0,T,2T时刻进入电场时,两板间在T/2时间内有电压U0,因而侧向做匀加速运动,其侧向位移为y1,速度为V。接着

4、,在下一个T/2时间内,两板间没有电压,离子以V速度作匀速直线运动,侧向位移为y2,如图2-3所示。这些离子在离开电场时,侧向位移有最大值,即(y1+y2)。图2-3当离子在T=t/2,3/2T,5/2T时刻进入电场时,两板间电压为零,离子在水平方向做匀速直线运动,没有侧向位移,经过T/2时间后,两板间有电压U0,再经过T/2时间,有了侧向位移y1,如图2-3所示。这些离子离开电场时有侧向位移的最小值,即y1。当离子在上述两种特殊时刻之外进入电场的,其侧向位移值一定在(y1+y2)与y1之间。根据上述分析就可以求出侧向位移的最大值和最小值。所以,离子击中荧光屏上的位置范围为: 3、如图3所示,

5、R1=R2=R3=R4=R,电键S闭合时,间距为d的平行板电容器C 的正中间有一质量为m,带电量为q的小球恰好处于静止状态;电键S断开时,小球向电容器一个极板运动并发生碰撞,碰撞后小球带上与极板同种性质的电荷。设碰撞过程中没有机械能损失,小球反弹后恰好能运动到电容器另一极板。若不计电源内阻,求:(1)电源的电动势,(2)小球与极板碰撞后的带电量。图3分析与解:(1)电键S闭合时,R1、R3并联与R4串联,(R2中没有电流通过)UC=U4=(2/3)对带电小球有:mg=qE=qUC/d=(2/3)q/d 得:=(3/2)mgd/q(2)电键S断开后,R1、R4串联,则UC=/2=(3/4)mgd

6、/q 1小球向下运动与下极板相碰后,小球带电量变为q,向上运动到上极板,全过程由动能定理得:mgd/2qUC/2mgd+qUC=0 2由12式解得:q=7q/6。图44、如图4所示为矩形的水平光滑导电轨道abcd,ab边和cd边的电阻均为5R0,ad边和bc边长均为L,ad边电阻为4R0,bc边电阻为2R0,整个轨道处于与轨道平面垂直的匀强磁场中,磁感强度为B。轨道上放有一根电阻为R0的金属杆mn,现让金属杆mn在平行轨道平面的未知拉力F作用下,从轨道右端以速率V匀速向左端滑动,设滑动中金属杆mn始终与ab、cd两边垂直,且与轨道接触良好。ab和cd边电阻分布均匀,求滑动中拉力F的最小牵引功率

7、。分析与解:mn金属杆从右端向左端匀速滑动切割磁感线产生感应电动势,mn相当于电源,其电路为内电路,电阻为内电阻。当外电阻最大时,即当mn滑到距离ad=(2/5)ab时,此时电阻Rmadn=Rmbcn=8R0时,外阻最大值Rmax=4R0,这时电路中电流最小值:Imin=/(Rmax+r)=BLV/(4R0+R0)=BLV/5R0所以,Pmin=FminV=BLIminV=BLVBLV/5R0=B2L2V2/5R05、如图5所示,用密度为D、电阻率为的导线做成正方形线框,从静止开始沿竖直平面自由下落。线框经过方向垂直纸面、磁感应强度为B的匀强磁场,且磁场区域高度等于线框一边之长。为了使线框通过

8、磁场区域的速度恒定,求线框开始下落时的高度h。(不计空气阻力)分析与解:线框匀速通过磁场的条件是受到的竖直向上的安培力与重力平衡,即:F安=mg 1图5设线框每边长为L,根据线框进入磁场的速度为,则安培力可表达为:F安=BIL= 2设导线横截面积为S,其质量为:m=4LSD 3其电阻为:R=4L/S 4联立解1、2、3、4式得:h=128D22g/B4想一想:若线框每边长为L,全部通过匀强磁场的时间为多少?(t=2L/V)线框通过匀强磁场产生的焦耳热为多少?(Q=2mgL)6、如图6所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧

9、呈弧形升高。ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长。试求:(1)ab、cd棒的最终速度,(2)全过程中感应电流产生的焦耳热。图6分析与解:ab下滑进入磁场后切割磁感线,在abcd电路中产生感应电流,ab、cd各受不同的磁场力作用而分别作变减速、变加速运动,电路中感应电流逐渐减小,当感应电流为零时,ab、cd不再受磁场力作用,各自以不同的速度匀速滑动。全过程中系统内机械能转化为电能再转化为内能,总能量守恒。(1) ab自由下滑,机械能守恒:mgh=(1/2)mV2 1由于ab、cd串联在同一电路中,任何时刻通过的电流总相等,金属棒有效长度 Lab=3L

10、cd,故它们的磁场力为:Fab=3Fcd 2在磁场力作用下,ab、cd各作变速运动,产生的感应电动势方向相反,当ab=cd时,电路中感应电流为零,(I=0),安培力为零,ab、cd运动趋于稳定,此时有:BLabVab=BLcdVcd 所以Vab=Vcd/3 3ab、cd受磁场力作用,动量均发生变化,由动量定理得:Fabt=m(V-Vab) 4 Fcdt=mVcd 5联立以上各式解得:Vab=(1/10),Vcd=(3/10)(2)根据系统能量守恒可得:Q=E机=mgh-(1/2)m(Vab2+Vcd2)=(9/10)mgh说 明:本题以分析ab、cd棒的受力及运动情况为主要线索求解。注意要点:

11、明确ab、cd运动速度稳定的条件。理解电磁感应及磁场力计算式中的“L”的物理意义。电路中的电流、磁场力和金属棒的运动之间相互影响制约变化复杂, 解题时抓住每一瞬间存在Fab=3Fcd及终了状态时Vab=(1/3)Vcd的关系,用动量定理求解十分方便。图7金属棒所受磁场力是系统的外力,且FabFcd时,合力不为零,故系统动量不守恒,只有当Lab=Lcd时,Fab=Fcd,方向相反,其合力为零时,系统动量才守恒。7、如图7所示,X轴上方有匀强磁场B,下方有匀强电场E。电量为q、质量为m、重力不计的粒子y轴上。X轴上有一点N(L.0),要使粒子在y轴上由静止释放而能到达N点,问:(1)粒子应带何种电

12、荷? (2)释放点M应满足什么条件? (3)粒子从M点运动到N点经历多长的时间?分析与解:(1) 粒子由静止释放一定要先受电场力作用 (磁场对静止电荷没有作用力),所以 M点要在-Y轴上。要进入磁场必先向上运动,静上的电荷要向上运动必须受到向上的电场力作用,而场强 E方向是向下的,所以粒子带负电。(2)粒子在M点受向上电场力,从静止出发做匀加速运动。在 O点进入匀强磁场后,只受洛仑兹力(方向沿+X轴)做匀速周围运动,经半个周期,回到X轴上的P点,进入匀强电场,在电场力作用下做匀减速直线运动直到速度为零。然后再向上做匀加速运动,在X轴上P点进入匀强磁场,做匀速圆运动,经半个周期回到X轴上的Q点,

13、进入匀强电场,再在电场力作用下做匀减速运动直到速度为零。此后,粒子重复上述运动直到 X轴上的N点,运动轨迹如图7-1所示。图7-1设释放点M的坐标为(0.-yO),在电场中由静止加速,则:qEyO=mV2 1在匀强磁场中粒子以速率V做匀速圆周运动,有:qBV=mV2/R 2设n为粒子做匀速圆周运动的次数(正整数)则:L=n2R,所以R=L/2n 3解123式得:V=qBL/2mn,所以yO=qB2L2/8n2mE (式中n为正整数)(3)粒子由M运动到N在电场中的加速运动和减速运动的次数为(2n-1)次,每次加速或减速的时间都相等,设为t1,则:yO=at12=qEt12/m所以t1=图8-1

14、粒子在磁场中做匀速圆周运动的半周期为t2,共n次,t2=m/qB粒子从M点运动到N点共经历的时间为:t=(2n-1)t1+nt2=(2n-1)BL/2nE+nm/qB (n=1、2、3)图8-28、平行金属,板长1.4米,两板相距30厘米,两板间匀强磁场的B为1.310-3特斯拉,两板间所加电压随时间变化关系如8-1图所示。当t=0时,有一个a粒子从左侧两板中央以V=4103米/秒的速度垂直于磁场方向射入,如8-2图所示。不计a粒子的重力,求:该粒子能否穿过金属板间区域?若不能,打在何处?若能,则需多长时间? (已知a粒子电量q=3.210-19库,质量m=6.6410-27千克)图8-3分析

15、与解:在t=0到t=110-4秒时间内,两板间加有电压,a粒子受到电场力和洛仑兹力分别为:F=qu/d=q1.56/0.3=5.2q 方向竖直向下f=qBv=q1.310-34103=5.2q 方向竖直向上因F=f,故做匀速直线运动,其位移为:S=vt=4103110-4=0.4米在t=110-4秒到t=210-4秒时间内,两板间无电场,a粒子在洛仑兹力作用下做匀速圆周运动,其轨迹半径为:r=mv/qB=(6.6410-274103)/(3.210-191.310-3)=6.3710-2米d/4所以粒子不会与金属板相碰。面a粒子做匀速圆周运动的周期为:T=2m/qB=(23.146.6410-27)/(3.210-191.310-3)=1.010-4秒则在不加电压的时间内,a粒子恰好能在磁场中运动一周。当两板间又加上第2个周期和第3个周期的电压时,a粒子将重复上述的运动。故经13/4周期飞出板外(t=6.510-4秒)其运动轨迹如8-3图所示。图9-19、如图9-1所示,虚线上方有场强为E的匀强电场

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 试题/考题 > 高中试题/考题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号