应用化学毕业论文综述

上传人:xmg****18 文档编号:122411930 上传时间:2020-03-05 格式:DOC 页数:15 大小:85KB
返回 下载 相关 举报
应用化学毕业论文综述_第1页
第1页 / 共15页
应用化学毕业论文综述_第2页
第2页 / 共15页
应用化学毕业论文综述_第3页
第3页 / 共15页
应用化学毕业论文综述_第4页
第4页 / 共15页
应用化学毕业论文综述_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《应用化学毕业论文综述》由会员分享,可在线阅读,更多相关《应用化学毕业论文综述(15页珍藏版)》请在金锄头文库上搜索。

1、.目录摘要1关键词1Abstract1Key words1前言1制备方法21 固相法2 1.1 球磨法2 1.2 热分解法2 1.3 直流电弧等离子体法32 液相法3 2.1 沉淀法4 2.1.1 共沉淀法4 2.1.2 氧化沉淀法5 2.1.3 还原沉淀法5 2.1.4 超声沉淀法6 2.2 微乳液法6 2.3 水热法/溶剂热法7 2.4 水解法8 2.5 溶胶-凝胶法8应用9 (一)生物医药9 (二)磁性液体9 (三)催化剂载体10 (四)微波吸附材料10 (五)磁记录材料10 (六)磁性密封10 (七)磁保健11展望11致谢11参考文献12 . . . 纳米四氧化三铁的制备及应用的研究进

2、展 应用化学 专业 学生 xxx指导教师 xxx摘要:纳米Fe3O4粒子因其特殊的理化性质而在多个领域得到广泛的应用。本文综述了纳米四氧化三铁的制备方法和应用领域,其中的制备方法主要有球磨法、沉淀法、微乳液法、水热法/溶剂热、水解法、氧化法、高温分解法和溶胶-凝胶法等,并讨论了纳米四氧化三铁的主要制备方法的优缺点,最后展望了纳米四氧化三铁的应用前景。关键词:纳米四氧化三铁;制备方法;应用;进展Progress in Preparation and Application of Nano-iron tetroxideStudent majoring in Applied chemistry Na

3、me XXXTutor XXXAbstract: Nano-Fe3O4 particles because of their special physical and chemical properties and is widely used in many fields. In this paper, the preparation methods and applications of nano-iron oxide, one of the main methods for preparing milling, precipitation, microemulsion, hydrothe

4、rmal method / solvent heat, hydrolysis, oxidation, pyrolysis and sol - gel method and discusses the advantages and disadvantages of the main method for preparing iron oxide nanoparticles, and finally the application prospect of nano-iron oxide.Key words: nano-iron oxide; preparation methods; applica

5、tion; progress前言 纳米材料是指颗粒尺寸小于100nm的单晶体或多晶体,纳米微粒具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等特性1-2。四氧化三铁是一种常用的磁性材料,又称氧化铁黑,呈黑色或灰蓝色。Fe3O4为反式尖晶石结构,属于立方晶系,氧原子处于立方密堆积结构,一半的Fe3+占据四面体位置,Fe2+和另一半Fe3+占据八面体位置。晶体中并不含FeO2-离子。其真实结构可较好地表示为Fe(III)Fe(II)Fe(III)O4。纳米Fe3O4作为一种磁性纳米微粒,将其制成磁性高分子微球后,具有许多优良的特性,如粒径小,表面积大,易于吸附细胞、药物、蛋白质等;具有顺磁

6、性,无外加磁场时在溶液中分散均匀稳定,加磁场时则可简单快速分离;可通过共聚、表面改性,赋予其表面多种反应性功能基团,具有良好的生物相容性。因此,在细胞、核酸、蛋白质分离、固定化酶、靶向药物、免疫测定等生物医学领域有着广泛的应用前景3-7。目前用来制备纳米四氧化三铁的方法有很多,如直流电弧等离子体法9、球磨法、沉淀法、微乳液法、水热法/溶剂热、水解法、氧化法、高温分解法和溶胶-凝胶法等8。这些方法的制备过程及设备要求有很大的区别,其产物的形貌及性质也不尽相同,人们可以根据需要来选择合适的制备方法,以得到期望的目标产物。本文综述了目前用于制备纳米四氧化三铁的制备方法,分析了其优缺点,介绍了纳米四氧

7、化三铁的主要应用领域,并对其制备方法的研究方向和应用前景进行了展望。制备方法近年来已发展了多种制备纳米Fe3O4的方法,总体上可以分为两大类,即固相法(干法)和液相法(湿法)。固相法的典型特征是以固相物质作为反应物,不经过溶液过程而制备出目标产物的方法。近年来,直流电弧等离子体法、热分解方法和球磨方法是研究较多的纳米Fe3O4的固相制备方法;而液相法则以液态体系为反应前驱体系,经过沉淀、脱水和结晶等过程,制备得到纳米Fe3O4。其中,沉淀法、水(溶剂)热法、有机物模板法和回流法等是研究较多的制备纳米Fe3O4的液相方法9。1 固相法1.1 球磨法8-9球磨法可分为普通球磨法和高能球磨法两类。普

8、通球磨法是指在球磨机中,将粒度为几十微米的Fe3O4粗颗粒通过钢球之间或钢球与研磨罐内壁之间的撞击,将其破碎成细颗粒,细化至纳米级。Gerardo10将0.5m的Fe3O4和甲醇混合,在氩气保护下球磨,得到710nm的Fe3O4粒子。高能球磨法是利用高能球磨机对原料进行机械合金化,把原料合成纳米尖晶石型铁氧体。球磨法产物晶粒尺寸不均匀,易引入杂质。1.2 热分解法9、11-12热分解法是近年来制备纳米Fe3O4应用较多的方法之一。热分解是在含有表面活性剂作为稳定剂的高沸腾的有机溶剂中,高温分解铁前驱体得到铁原子,再由铁原子生成铁纳米颗粒,将铁纳米颗粒通过控制氧化得到Fe3O4纳米粒子。其基本的

9、做法是:将有机铁合物如Fe(CO)5,Fe(acac)3等溶解在某溶剂中,借助回流装置、高压釜等使反应温度控制在该溶剂的沸点左右,使反应物发生分解、沉淀等反应得到产物。常用的铁前驱体包括铁乙酰丙酮铁(Fe(acac)3)、FeCup3(Cup=N-亚硝基苯胲,俗称铜铁试剂)及羰基铁(Fe(CO)5)。反应过程中常用脂肪酸、油酸及十六烷基胺等作为表面活性剂以防止粒子沉淀团聚。起始试剂的比例(铁有机化物、表面活性剂、溶剂)对于控制粒子的粒径及形态具有决定作用,另外,反应温度,反应时间和熟化时间对于精确控制其粒径和形态也有重要的影响。如果前期金属是零价的,如铁羰基化物,热分解的开始会形成金属铁,继续

10、反应会形成氧化物纳米粒子。而以金属阳离子为中心的前驱物的分解会直接形成Fe3O4,如Sun等13-14以Fe(acac)3为原料制备出了高分散性的磁性纳米粒子,并发现Fe(acac)3可在有1,2-十六烷、油酰胺、油酸存在下的酚醚中分解。此类方法制得的纳米颗粒结晶度高,粒径可控且分布较窄,缺点则是颗粒的水溶性较差,限制了其在生物医学方面的应用。对此,Li Z等15以高沸点、强极性的2-吡咯烷酮作为反应传热介质,以乙酰丙酮铁Fe(acac)3为原料,采用高温分解法制备出了粒径均一、尺寸可控、结晶度高、磁响应强的水溶性Fe3O4纳米粒子,该纳米粒子具有良好的生物相容性,可望用作核磁共振造影剂。1.

11、3 直流电弧等离子体法9、13直流电弧等离子体法广泛应用于陶瓷粉体的制备,目前此法已经成功地用于制备磁性纳米颗粒。Balasubramaniam等16以钨为阴极、铁块为阳极,将两个电极安装在有多个接口的不锈钢反应器内,在空气环境下通直流电激发产生电弧。阳极的铁块在电弧的作用下逐渐蒸发为气态以至电离,与空气介质中被激发电离形成的离子形成等离子体,同时发生氧化还原反应,形成Fe3O4纳米粒子。Lei52等则在直流电弧等离子体法的基础上利用一种气溶胶萃取探头来实时监控过程中生成的纳米粒子的迁移率,以测量粒子的粒径分布,制得的Fe3O4粒子的粒径为89nm,在室温下饱和磁化强度为40.15emu/g,

12、矫顽力和剩磁分别为26Oe和1.5emu/g。直流电弧等离子体法的最大优点是可以连续生产。随着铁的不断蒸发,纳米颗粒可以被连续地制备出来。但该法生产能耗高,且得到的产物往往是铁的几种化合物的混合物。Balasubramaniam在解决产物纯度上进行的研究,发现弧电流是影响产物纯度的主要因素,通过严格控制弧电流可以得到纯相的Fe3O4纳米粒子。总的来说,固相法制备Fe3O4纳米粒子的只要优点是操作简单,生产工艺成熟,易于实现工业化大规模连续生产,但缺点是固相法制得的产物往往是铁的几种化合物的混合物,产物品质较低,颗粒大小分布不均匀,并且能耗高。因而,要制备化学计量的、纯度高、品质好且颗粒大小均匀

13、的纳米Fe3O4,应采用液相法。2 液相法 液相法是目前制备纳米Fe3O4的主要方法,液相法可以较好地控制Fe2+和Fe3+的比例,因而容易制得化学计量的、品质较高的纳米四氧化三铁粒子。2.1 沉淀法8-9、11-12沉淀法是指使用沉淀剂将液体中的Fe2+和Fe3+按1:2的摩尔比例沉淀出来,形成氢氧化物胶体;胶体失水得到纳米Fe3O4悬浮体系,然后经过滤、洗涤、干燥等过程得到纳米Fe3O4的方法。 根据沉淀过程的特点,一般将沉淀法分为共沉淀法、氧化沉淀法和还原沉淀法。2.1.1 共沉淀法共沉淀法是指把含一定配比Fe2+和Fe3+的硅酸盐或氯化物溶液, 用过量的碱溶液高速搅拌进行沉淀反应,制得

14、纳米Fe3O4微粒。此法通常是将Fe2+、Fe3+的可溶性盐配成溶液,然后按照1:2或更高的摩尔比例将Fe2+和Fe3+的两种溶液混合,用碱作为沉淀剂,将混合溶液中的Fe2+和Fe3+共同沉淀出来,沉淀转化为Fe3O4后,经过滤、洗涤、干燥得到纳米级Fe3O4。主要的反应为: Fe2+ + 2Fe3+ + 8OH = Fe3O4 + 4H2O 林本兰17、邹涛等18均以FeCl24H2O和FeCl36H2O为原料,分别以NH3H2O、NaOH为沉淀剂,使用共沉淀法得到Fe3O4纳米粒子,认为晶化时间是影响粒子大小的关键因素。谌岩19、秦润华20等则均以FeSO47H2O和FeCl36H2O为原

15、料,分别用NaOH、NH3H2O溶液进行共沉淀得到了Fe3O4纳米粒子。上述制备过程都是将沉淀剂滴入(加入)到Fe2+和Fe3+的混合溶液中,形成强碱性环境(常被称为“正向共沉淀法”),反应温度一般在7090之间,粒子的大小为几十纳米,形貌多为球形。安哲等21则将Fe2+和Fe3+混合溶液滴入氨水溶液中(常被称作“反向共沉淀法”),得到了25nm左右的Fe3O4纳米粒子。邱星屏22对比研究了正向共沉淀法和反向共沉淀法对Fe3O4粒子磁性和形貌的影响,发现两种方法对产物的磁性影响不大,但对产物粒子的形貌有影响。Aono等23发现同样条件下,反向共沉淀法得到的Fe3O4纳米粒子不仅小于正向共沉淀法得到的Fe3O4纳米粒子,而且前者在交流电磁场中的热响应温度

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号