毕业论文--地面移动机器人行走机构

上传人:liy****000 文档编号:121847300 上传时间:2020-02-26 格式:DOC 页数:9 大小:850KB
返回 下载 相关 举报
毕业论文--地面移动机器人行走机构_第1页
第1页 / 共9页
毕业论文--地面移动机器人行走机构_第2页
第2页 / 共9页
毕业论文--地面移动机器人行走机构_第3页
第3页 / 共9页
毕业论文--地面移动机器人行走机构_第4页
第4页 / 共9页
毕业论文--地面移动机器人行走机构_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《毕业论文--地面移动机器人行走机构》由会员分享,可在线阅读,更多相关《毕业论文--地面移动机器人行走机构(9页珍藏版)》请在金锄头文库上搜索。

1、机器人技术姓名: 导师: 班级: 学号: 地面移动机器人行走机构摘要:行走机构是移动机器人的重要组成部分,直接决定了移动机器人的地形适应能力和运动能力。本文着重介绍了地面移动机器人行走机构的发展现状以及最新应用、分析了各行走机构的优缺点,最后对行走机构的发展趋势做出了展望。关键词:移动机器人;行走机构;Abstract:As an important part of mobile robot, the walking mechanism determines the terrain adaptability and sports ability of the robot. This paper

2、 introduces the development status of ground mobile robot as well as the latest application, analyzes on the advantages and disadvantages of the walking mechanism and finally prospects the development trend of the walking mechanism.Keywords: mobile robot; walking mechanism;一、 移动机器人发展概况自1961年美国Unimat

3、ion公司研制出世界上第一台往复式工业机器人以来, 其技术的发展就受到各国的重视,被认为是对未来新兴产业发展具有重要意义的高技术之一。近些年来,随着计算机技术的不断发展,机器人技术也逐渐趋于成熟。机器人的发展主要分为三个阶段:包括第一代示教/再现(Teaching/Playback)机器人、第二代传感控制(Sensory controlled)机器人以及第三代智能(Intelligent)机器人。图 1.1目前绝大多数机器人的灵活性,只是就其能够“反复编程”而言,工作环境相对来说是固定的,所以一般人们称之为操作手(Manipulator)。随着科学技术的不断进步,各式各样的移动机器人逐渐进入到

4、人们的日常生活中,在军事、工业、探险、医疗等领域发挥了重大作用。为了获得更大的独立性,人们要求机器人能够在一定范围内安全运动, 增强机器人对环境的适应能力。因此,近年来移动机器人特别是自主式移动机器人成为机器人研究领域的中心之一。移动机器人按照工作环境来讲主要有地面、水下和空中三种。地面移动机器人是脱离人的直接控制,采用遥控、自主或半自主等方式在地面运动的物体.地面移动机器人的研究最早可追溯到五十年代初,美国Barrett Electronics公司研究开发出世界第一台自动引导车辆系统。由于当时电子领域尚处于晶体管时代,该车功能有限,仅在特定小范围运动,目的是提高运输自动化水平。到了六、七十年

5、代,美国仙童公司研制出集成电路,随后出现集成微处理器,为控制电路小型化奠定了硬件基础。到了八十年代,国外掀起了智能机器人研究热潮,其中具有广阔应用前景和军事价值的移动机器人受到西方各国的普遍关注。时至今日,各种类型的地面移动机器人纷纷研制出来,其应用范围从民用、工业用到军用,涉及人类活动的方方面面。图 1.2二、 地面移动机器人行走机构分类及特点地面移动机器人行走机构按照结构形式可以分为轮式、履带式、足式、跳跃式、蠕动爬行式和复合式行走机构。2.1 轮式行走机构轮式机器人由于其较高的运动速度,在平坦的环境中具有独特的优越性,因此,国内外学者在轮式机器人方面也进行了大量的研究。轮式行走机构主要分

6、为单轮、双轮和多轮行走机构,其中双轮行走机构又分为自行车式和左右对称布置式。单轮滚动机器人的典型代表是美国卡耐基梅隆大学机器人研究所研制的单轮滚动机器人Gyrover,如图2.1所示。Gyrover是一种陀螺稳定的单轮滚动机器人。它的行进方式是基于陀螺运动的基本原理,具有很强的机动性和灵活性。单轮行走机构具有结构紧凑,运动灵活和地形适应能力强等优点,其缺点是不易控制。图 2.1自行车机器人是机器人学术界提出的一种全新的智能运输(或交通)工具的概念,由于其车体窄小、可作小半径回转、运动灵活、结构简单,因此可在灾难救援、森林作业中得到广泛应用。但到目前,仍处于理论探讨和初步的实验研究阶段。左右对称

7、布置的两轮移动机器人左右轮分别由一个电机驱动,依靠差速实现转向,转向灵活。两轮行走机构简单,主要缺点是在静止和低速时非常不稳定。美国Segway公司的Dean Kamen发明了世界上第一部可以载人的两轮移动小车,它的出现代表了两轮移动机器人技术在实用方面的一个突破。现在已经应用在多个领域,如图2.2。 图 2.2轮式移动机器人中最常见的机构就是三轮及四轮移动机器人。三轮及四轮移动机器人平台现在已经具有比较成熟的技术。当在平整地面上行走时,这种机器人是最合适的选择。其优点是速度快、效率高、运动噪声低;但是越障能力、地形适应能力差、转弯效率低,或转弯半径大。图2.3是不同结构形式轮式机器人性能比较

8、。图 2.32.2 履带式行走机构履带式行走机构按照履带的结构形式可以分为单节双履带式、双节四履带式、多节多履带式和自重构式。单节双履带式以由美国白特尔公司(Battelle)开发的ROCOMP机动平台和北京京金吾高科技公司开发的JW902 (第5代)排爆机器人为代表。该行走机构结构较为简单,很难实现复位。国外开发的多为双节双履带式移动机器人,因为此种移动机器人与单节式相比较,越障功能更优。东华大学毛立民教授研制的高度可调的自主变位履带式管道机器人现已申请专利。美国福斯特米勒公司开发的履带式“鹰爪”无人作战平台也是该种机器人的典型代表。多节多履带式以我国自行生产的“灵蜥-B”型排爆机器人和美国

9、Vecan公司日前准备研发新一代战场救援机器人VecnaBEAR为代表。山东科技大学提出的一种可变形履带机器人,主要由1个躯体部分、4个折叠臂、4个履带体所组成,其中每一个履带体都通过一个折叠臂和机器人的躯体相联。哈尔滨工业大学机器人研究所研制的模块化可重构履带式微小型机器人,单个机器人可以独立运行,多个机器人可以重构成链型和环形机器人。履带式行走机构具有以下优点: u 支撑面积大,接地比压小,适合于松软或泥泞场地作业,下陷度小,滚动阻力小,越野机动性能好。 u 转向半径极小,可以实现原地转向。 u 履带支撑面上有履齿,不易打滑,牵引附着性能好,有利于发挥较大的牵引力。 u 具有良好的自复位和

10、越障能力。又称临场感,它是指用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该达到使用户难以分辨真假的程度。履带式行走机构仍面临许多待解决的问题: l 有些履带式移动机器人的体积和重量太大,应适当缩小机器人的体积,减轻机器人的重量。l 对地面的适应性和稳定性需要得到进一步的提高。 l 履带式行走机构能源利用率较低,转向较慢。2.3 足式行走机构足式行走机构分为两足、四足、六足和多足机器人,其中多足行走机构和六足行走机器人类似,因此本文不在加以赘述。两足机器人目前首推美国波士顿动力公司为美军研制的最先进人形机器人“阿特拉斯”(图 2.4)。两足行走机构能耗低,能够适应各种地面并且具有

11、较强的越障能力,在恶劣的地形时运动较为灵活,机动性较好。但是其动力学特性非常复杂,具有多变量、强耦合、非线性和变结构等特点。图 2.4四足机器人研究的代表是日本东京工业大学的広濑福田机器人研究实验室。从80年开始至今已研制出3个系列12款四足机器人。美国的四足机的典型代表是卡耐基梅隆大学的波士顿动力实验室研制的BigDog和LittleDog。山东大学成功研制出国内首台“大狗”机器人,最大负载达到120kg,在负载50kg的前提下可以实现最大速度达1.4m/s,突破了仿生机构、高功率密度液压驱动、环境感知、仿生步态规划、状态感知与动态控制、关键单元与系统测试等关键技术。四足行走机构简单且灵活,

12、承载能力强、稳定性好,既能以静态步行方式实现慢速行走,又能以动态方式实现高速行走。主要存在的问题是由于控制策略导致有时会由于惯性、脚力失衡等因素导致机器人失稳。当前研究的六足机器人以美国的ATHLETE(全地形六足地外探测器)机器人和仿生蟹为代表。当在水平表面上时,ATHLETE机器人的车轮可加快行进速度;当遇到复杂的地形时,其灵活的6个爪子可以应付各种地形。2.4 跳跃式行走机构跳跃机器人可以越过数倍甚至数十倍自身尺寸的障碍物,具有极强的越障能力及爆发力但是较难控制,运动稳定性较差。目前跳跃式机器人研究机构较少,但已有一些研究成果。圣地亚国家实验室(Sandia National Labor

13、atories)的斯普利特博士(Dr Barry Spletzer)设计的跳跃机器人,利用一个内燃机推动活塞来跳跃。日本东京工业大学北川实验室研究的小型跳跃机器人,该机器人主要是由两个半球体和一个小气缸组成,靠着球体滚动和气缸跳跃。国内东南大学日前研制出了一种新型具有弹跳功能的翻滚式机器人Tumbot(图2.5),利用齿轮组中的缺齿轮来瞬间释放储存的弹性势能,并且可以利用翻转臂的旋转实现机器人的翻滚运动并可以翻越较小的障碍物,具有一定的平稳性和抗冲击性。图2.5 Tumbot2.5 蠕动爬行式行走机构蠕动爬行式机器人主要以蛇形机器人为主。蛇形机器人具有极强的地形适应能力,能够适应各种复杂地形,

14、但是由于其控制较为复杂,目前尚处于研究阶段。2.6 复合式行走机构在某些工况下,无论是轮式、腿式还是履带式都不能完全满足人们在某一方面的需要,因此人们往往将上述的两种或几种机构组合成复合式结构。目前,复合式移动机器人主要有轮履式、轮腿式、轮履腿式等,通过将不同的行走方式加以结合,从而满足机器人设计高性能的要求。复合式行走机构具有出色的地形适应能力、越障能力和稳定的动态性能,除跳跃式复合式行走机构尚处于实验阶段,其余复合式行走机构的研究已经较为成熟,目前已经大量用于军用机器人。三、 结语行走机构是移动机器人的重要组成部分,直接绝对了移动机器人的地形适应能力和运动能力。随着对移动机器人尤其是特种机

15、器人性能的要求不断提高,移动机器人行走机构必将经历一段快速的发展时期,主要向着两个方面发展。一是复合行走机构的不断改进和创新;一是新型行走机构如全向轮、足式、蠕动爬行式以及跳跃式等行走机构的进一步发展和完善。参考文献1 王田苗,刘进长. 机器人技术主题发展战略的若干思考J. 中国制造业信息化, 2003, 32(1): 31-35.2 Stephan K D, Michael K, Michael M G, Jacob L, Anesta E P. Social implications of technology:the past,the present,and the futureJ. Proceedings of the IEEE,2012,100:1752-1781.3 朱磊磊,陈军. 轮式移动机器人研究综述J. 机床与液压, 2009,08:242-247.4 周卫华,王班,郭吉丰. 连续切换轮及其移动机器人的自锁特性J. 机器人,2013-7, 35(4) :449-451.5 陈淑艳,陈文家. 履带式移动机器人研究综述J. 机电工程,2007,12:109-112.6 张玉华,赵杰,张亮,齐立哲,蔡鹤皋. 新型模块化可重构机器人系统J. 机械工程学报,2006-5, 42

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 毕业论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号