非均相催化剂的设计美国西北大学ppt课件

上传人:杰猫 文档编号:119415821 上传时间:2020-01-15 格式:PPT 页数:33 大小:5.32MB
返回 下载 相关 举报
非均相催化剂的设计美国西北大学ppt课件_第1页
第1页 / 共33页
非均相催化剂的设计美国西北大学ppt课件_第2页
第2页 / 共33页
非均相催化剂的设计美国西北大学ppt课件_第3页
第3页 / 共33页
非均相催化剂的设计美国西北大学ppt课件_第4页
第4页 / 共33页
非均相催化剂的设计美国西北大学ppt课件_第5页
第5页 / 共33页
点击查看更多>>
资源描述

《非均相催化剂的设计美国西北大学ppt课件》由会员分享,可在线阅读,更多相关《非均相催化剂的设计美国西北大学ppt课件(33页珍藏版)》请在金锄头文库上搜索。

1、Towards Total Design of Towards Total Design of Heterogeneous CatalystsHeterogeneous Catalysts Harold H. Kung Chemical Engineering Department Northwestern University Evanston, IL 60208-3120 October 13, 2003 What would one like to accomplish in total catalyst synthesis? Shape of the cavity Path to ca

2、vity Ability to design and position ancillary groups Complete atomic control of active site (metal, oxide) Metal Crystallite Catalytic Active Phase Surface arrangement of atoms Composition Nature of support Location of crystallite on support (defect sites) Structure sensitivity Electronic effect Lig

3、and effect Metal clusters derived from metal carbonyl complexes BC Gates J. Molec. Catal. A Chem 163 (2000) 55 Os5C on MgO Ir4 in zeolite Size-selective cluster beam deposition of Aun clusters on MgO Heiz, Sanchez, Abbet, Schneider, Chem. Phys. 262 (2000) 189. MS signal of C16O18O in TPD after expos

4、ure to 18O2 and then CO Aaron S. Eppler, Gnther Rupprechter, Lszl Guczi, and Gabor A. Somorjai, J. Phys. Chem. B 101 (1997) 9973. Array of Pt on silica Deposition of metal clusters using lithography Insufficient control of shape, exact size, and atom locations; current limit on smallest size achieve

5、d. P-SO32- + Mn+(aq) P-SO32-Mn+ P-SO32-Mn+ + NaBH4 P-SO32-/Mo Preparation of uniform sized metal particles using functional resins Corain, Centomo, Ferrari Meyer-Zaika, Schmid, Gold2003, October 2003. Control of surface coordinative unsaturation sites of aluminum oxide (Al2O3) by synthesis Active si

6、tes are surface exposed Al ions (Lewis acid sites). Al O Al O O Al O O O Active site AlAl OR OR RO RO R O O R NRH2 H2O O H2 R N AlAl O O O H2 R N Strategy: use amine (Lewis base) to preserve Lewis acidity. Al OR NRH2 RO RO 2 monomer Can make monomer Amine protection is retained Final solid an active

7、 catalyst Kozlov, Kung, Xue, and Kung, Angew. Chem. Int. Ed. 42(2003) 2415 Conversion of cyclopentene oxide in reaction with piperidine catalyzed by various aluminas. PPD-Al2O3, SG-Al2O3-200, SG-Al2O3-500-H2O-200, SG-Al2O3-500- H2O, PA-Al2O3-500-H2O-200 PA-Al2O3-500-H2O, blank. Xue, Kung, Kozlov, Po

8、pp, and Kung, Catal. Today, 2003. Generation of active site by building on a well-defined structure 001203c J.M. Thomas, et al. Nature 398 (1999) 227; Angew. Chem. Int. Ed. 39 (2000) 2310. Hexane ( ) Oxidation Two Co(III) ions in CoAlPO-18 at the desired distance apart in Co/P = 0.1 samples. CoAlPO-

9、36 of larger pore structure and shape, produces much more 3-ol and 3-one. Importance in controlling relative location of sites Raja and Thomas, J. Molec. Catal. 181 (2002) 3 29Si NMR of (Si-O)n oligomer units Atom-by-Atom Synthesis of Metal-Oxygen Chain Chang, Kung, and Kung, Chem. Comm. submittted.

10、 Metal-Oxygen Backbone of Designed Sequence and Structure OSiM Molecular templating: A. Katz and M.E. Davis, Nature 403 (2000) 286. Introduce functional groups at specific locations in the cavity. Molecules diffuse through silica wall into and out of cavity. Preparing sites with predetermined spacin

11、g Dufaud and Davis, JACS 125 (2003) 9403 Table 3. Synthesis of Bisphenol A with Sulfonic Acid Functionalized SBA-15 Silicas and para-Toluene Sulfonic Acida per site yield of bisphenol Ab p, p/o, p molar ratio catalystfunctional groupGCcNMRdGCcNMRd para-toluene sulfonic acid CH3aryl-SO3H 36 29 2 2.6

12、1-propane sulfonic acid CH3CH2CH2-SO3H 9.6e n.d.f 1.8e n.d. 11SBA Si-CH2CH2aryl-SO3H 13 11 3 3.0 9SBA Si-propyl-SO3H 8.8 8.4 10 6.4 10SBA Si-propyl-SO3H HO3S -propyl-Si 18 18 12 8.3 Vronique Dufaud* and Mark E. Davis* , J. Am. Chem. Soc., 125 (31), 9403 -9413, 2003 What would one like to accomplish

13、in total catalyst synthesis? Shape of the cavity Path to cavity Ability to design and position ancillary groups Complete atomic control of active site Eliminated pore diffusion control, Little shape selectivity. A. Corma, U. Diaz, M.E. Domine, V. Forns, Angew. Chem. Int. Ed. 39 (2000) 1499. (h00) K.

14、 Polborn and K. Severin, Chem. Commun. (1999) 2481-2482. Molecular Imprinting Cat. 4 made from 2; control cat. 5 made from 1 RP RP Active At rest Molecular hinges to control accessibility of active sites Figure 1 Molecular model of endoclucanase 12A and schematic model of the DMAAm-enzyme molecular

15、switch. The red residues represent the catalytic glutamic acid side chains at the active site of EG 12A, the green residue is the Asn 55 position, the purple residue is the Ser 25 position, and the N-terminus is represented as the blue circle. Tsuyoshi Shimoboji, Edmund Larenas, Tim Fowler, Allan S.

16、 Hoffman,* and Patrick S. Stayton* Bioconjugate Chem., 14 (3), 517 -525, 2003 Figure 4 Characterization of ONPC enzyme activities for free DMAAm- EG 12A conjugates in solution at as function of polymer size and conjugation site. The enzyme activities were measured for 100 nM conjugates using ONPC (8mM) as a substrat

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号