基于单片机的弱信号过零检测测频系统仿真设计

上传人:xmg****18 文档编号:118732613 上传时间:2019-12-24 格式:DOC 页数:23 大小:514.65KB
返回 下载 相关 举报
基于单片机的弱信号过零检测测频系统仿真设计_第1页
第1页 / 共23页
基于单片机的弱信号过零检测测频系统仿真设计_第2页
第2页 / 共23页
基于单片机的弱信号过零检测测频系统仿真设计_第3页
第3页 / 共23页
基于单片机的弱信号过零检测测频系统仿真设计_第4页
第4页 / 共23页
基于单片机的弱信号过零检测测频系统仿真设计_第5页
第5页 / 共23页
点击查看更多>>
资源描述

《基于单片机的弱信号过零检测测频系统仿真设计》由会员分享,可在线阅读,更多相关《基于单片机的弱信号过零检测测频系统仿真设计(23页珍藏版)》请在金锄头文库上搜索。

1、. . . .摘 要 本文主要论述了基于单片机的微弱信号的过零检测的实现。随着无线电技术的发展与普及,频率已经成为广大群众所熟悉的物理量。传统的频率计通采用组合电路和时序电路等大量的硬件电路构成,产品不但体积较大,运行速度慢,而且测量低频信号时不宜直接使用。频率信号抗干扰性强、易于传输,可以获得较高的测量精度。同时频率测量方法的优化也越来越受到重视。并采用单片机和相关硬软件实现。而单片机的出现,更是对包括测频在内的各种测量技术带来了许多重大的飞跃,然而,小体积、价廉、功能强等优势也在电子领域占有非常重要的地位。为此,本文给出了一种以单片机为核心的频率测量系统的设计方法,实现了在一定误差范围内利

2、用过零检测实现对给定信号频率的测量。过零检测法即利用信号的数学特性(信号在一个周期内有两个零点)和利用模拟元器件的物理特性(信号过零时产生不同于非过零时的电平)从而通过单片机记录这个信号,并由单片机计算出信号的频率输出给显示设备。关键词:过零检测;测频系统;单片机系统 目录1 绪 论12 设计任务22.1 课程设计的目的及意义22.2 课程设计任务与要求22.3 实验器材22.4 课程设计技术指标23 低频弱信号测频系统工作原理33.1 低频弱信号测频系统概述33.2 低频弱信号测频系统原理33.2.1 原理基本构造图33.2.2 电路仿真原理图33.3 三极管放大原理43.4 三极管电子电子

3、开关53.5 改良型电子开关64 低频弱信号测频系统参数计算和器件选择84.1 参数计算84.2 元器件清单84.3 单片机最小系统94.3.1 晶振电路94.3.2 AT89C51单片机复位电路105 低频弱信号测频系统源程序115.1 程序流程图设计115.2 源程序设计125.2.1 程序总体分析125.2.2 TCON寄存器初值设定125.2.3 TMOD寄存器初值设定125.2.4 IE寄存器初值设定135.2.5 程序源代码146 低频弱信号测频系统调试及测试结果与分析176.1 实验调试176.2 实验结果17总结18致谢19参考文献20学习参考1 绪 论微弱信号(无噪声)的单片

4、机测频系统分为三部分。第一为信号放大部分,第二为信号转换部分,第三为信号处理部分。信号放大部分对输入信号进行放大,使得信号能被后续电路所识别和处理,此部分由两个三极管作为放大电路,一个三极管的放大倍数=5,经过两级放大继而推动后续处理电路。信号转换部分对前级放大的信号进行转换为后级单片机能处理的信号。此部分由一个桥式整流电路连接一个三极管组成。桥式整流电路对信号进行整流使信号没有负向电流(电压),全为正向电流(电压),当信号出现不出现零点时,使得三极管导通,三极管输出低电平,当信号产生零点时,三极管输出高电平。此高低电平即为单片机能处理的信号。信号处理部分即为单片机最小系统加数码显示屏组成。单

5、片机对前级输出的高低电频进行处理,频率即为1S内信号周期变化的次数,据此可在1S内测定信号的过零点即为信号的频率。之后由单片机计算并查表输出所得数据的百十个位和小数点给数码显示屏,数码显示屏利用动态扫描的方式显示频率。动态显示方法输出数码,利用人眼的停留效果和数码管的“余辉”作用实现功能。轮流点亮数码管(一个时刻内只有一个数码管是亮的),利用人眼的视觉暂留现象(也叫余辉效应),就可以做到看起来是所有数码管都同时亮了,这就是动态显示,也叫做动态扫描。只要刷新率大100Hz,即刷新时间小于10ms,就可以做到无闪烁,这也就是我们的动态扫描的硬性指标。2 设计任务2.1 课程设计的目的及意义(1)了

6、解过零检测方法及原理;(2)熟练掌握单片机的基础工程应用;(3)培养自我学习和设计的能力。2.2 课程设计任务与要求(1)认真分析和领会课程设计题目含意,查阅和运用相关技术资料,提倡独立思考,锻炼动手能力;(2)仔细观察实验现象,认真做好实验记录,要准确、规范、独立地完成实验内容,自觉培养严谨求实的科学作风;(3)认真完成课程设计论文(应包含电路图、元器件清单、仿真调试及验证结论、设计总结等内容)。2.3 实验器材1.PC; 2.Proteus仿真软件。2.4 课程设计技术指标输入信号幅度:27mV,测频范围:02710Hz,显示精度为小数点1位。3 低频弱信号测频系统工作原理3.1 低频弱信

7、号测频系统概述对于低频弱信号的测频首先对弱信号进行放大,使信号能推动后级电路并且能被单片机系统处理。进而利用三极管作为一个电子开关(三极管导通时集电极为低电平,当三极管截止时,可把三极管看做一个大电阻,集电极输出高电平),输出单片机能识别的高低电平,此高低电平的输出跟信号的过零点成正比关系,即信号非过零时就输出低电平,当信号过零时输出高电平。单片机对高电平的次数进行统计得到信号的变化频率从而得到信号的频率。3.2 低频弱信号测频系统原理3.2.1 原理基本构造图由放大电路和反馈网络形成自激振荡。单片机处理信号转换信号放大输出输入图3.1 弱信号测频系统框图弱信号低频测频系统的原理框图如图3.1

8、所示,弱信号进过放大足以被系统检测和处理,经过信号转换把信号的过零变化转化为单片机能识别的高低电平的转换,之后由单片机对高低电平进行处理,测量出系统的频率并输出给显示设备。3.2.2 电路仿真原理图 系统由V3作为信号源产生一个27mV,0270HZ的低频弱信号,并经过Q2、Q3两级三极管放大到峰峰值为1mV的信号,并经过桥式整流电路BR1整流输出给Q1和Q5两个三极管构成的电子开关,因为三极管由截止区过度到饱和区需要经过线型区,开关效果不会有明确的界线。为使三极管开关效果明确,故串接两个三极管。所以后一个三极管的状态只存在于饱和和截止两种状态,输出给单片机即为高低电平。单片机使用外部中断(I

9、NT0边沿触发方式),记录信号1S内的过零次数,由此得出信号的频率,输出给7SEG-MPX4-CC数码管利用动态显示的方法显示频率。动态显示即利用数码管的“余辉”作用,利用人眼的短暂视觉停留,通过选通数码管的片选端逐位显示百位个位和十位。图3.2 电路仿真原理图 3.3 三极管放大原理晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和锗PNP两种三极管,(其中,N表示在高纯度硅中加入磷,是指取代一些硅原子,在电压刺激下产生自由电子导电,而p是加入硼取代硅,产生大量空穴利于导电)。两者除了电源极性不同外,其工作原理都是相同的,

10、下面仅介绍NPN硅管的电流放大原理。 对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极c。 当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。 在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正偏,发射区的多数载流子(电子)及基区的多数载流子(空穴)很容易地越过发射结互相向对方扩散,但因

11、前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流了。 由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补给,从而形成了基极电流Ibo。根据电流连续性原理得: Ie=Ib+Ic 这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即: 1=Ic/Ib 式中:1-称为直流放大倍数, 集电极电流的变化量Ic与基极电流的变化量Ib之比为: = Ic/Ib 式中称

12、为交流电流放大倍数,由于低频时1和的数值相差不大,所以有时为了方便起见,对两者不作严格区分,值约为几十至一百多。 三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。 三极管放大时管子内部的工作原理 1、发射区向基区发射电子 电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。 2、基区中电子的扩散与复合 电子进入基区后,先在靠近发射结的附近密集,渐渐

13、形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区形成集电极电流Ic。也有很小一部分电子(因为基区很薄)与基区的空穴复合,扩散的电子流与复合电子流之比例决定了三极管的放大能力。 3、集电区收集电子 由于集电结外加反向电压很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区从而形成集电极主电流Icn。另外集电区的少数载流子(空穴)也会产生漂移运动,流向基区形成反向饱和电流,用Icbo来表示,其数值很小,但对温度却异常敏感。3.4 三极管电子电子开关 三极管不仅可以作为放大元器件,还可利用三级管的特性作为一个电子开关

14、使用。 三极管是以B 极电流IB 作为输入,操控整个三极管的工作状态。若三极管是在截止区,IB 趋近于0 (VBE 亦趋近于0),C极与E极间约呈断路状态,IC = 0,VCE = VCC。若三极管是在线性区,B-E接面为顺向偏压,B-C 接面为逆向偏压,IB 的值适中 (VBE = 0.7 V), IC= IB 呈比例放大,Vce= Vcc-Rc Ic = Vcc-Rc hFE IB可被 IB 操控。若三极管在饱和区,IB 很大,VBE = 0.8 V,VCE = 0.2 V,VBC = 0.6 V,B-C 与B-E 两接面均为正向偏压,C-E间等同于一个带有0.2 V 电位落差的通路,可得

15、I c=( Vcc - 0.2 )/ Rc ,Ic 与 IB 无关了,因此时的IB大过线性放大区的IB 值, IchFE IB 是必然的。三极管在截止态时 C-E 间如同断路,在饱和态时C-E 间如同通路 (带有0.2 V 电位降),因此可以作为开关。控制此开关的是 IB,也可以用 VBB 作为控制的输入讯号。图3.3和图3.4分别显示三极管开关的断路、通状态,及其对应的等效电路。 图3.3 三极管断路等效电路 图3.4三极管通路等效电路3.5 改良型电子开关改良三极管开关:因为三极管由截止区过度到饱和区需经过线性区,开关的效果不会有明确的界线。所以会导致电路开关效果不明显,使单片机记录产生误差不能精确算出中断次数。为使三极管开关的效果明确,可串接两三极管,电路如图3.5所示。图3.5

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号