四川省宜宾市第四中学2018-2019学年高二上学期期末模拟数学(理)试题(解析版)

上传人:【**** 文档编号:117401942 上传时间:2019-12-05 格式:DOC 页数:15 大小:2.98MB
返回 下载 相关 举报
四川省宜宾市第四中学2018-2019学年高二上学期期末模拟数学(理)试题(解析版)_第1页
第1页 / 共15页
四川省宜宾市第四中学2018-2019学年高二上学期期末模拟数学(理)试题(解析版)_第2页
第2页 / 共15页
四川省宜宾市第四中学2018-2019学年高二上学期期末模拟数学(理)试题(解析版)_第3页
第3页 / 共15页
四川省宜宾市第四中学2018-2019学年高二上学期期末模拟数学(理)试题(解析版)_第4页
第4页 / 共15页
四川省宜宾市第四中学2018-2019学年高二上学期期末模拟数学(理)试题(解析版)_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《四川省宜宾市第四中学2018-2019学年高二上学期期末模拟数学(理)试题(解析版)》由会员分享,可在线阅读,更多相关《四川省宜宾市第四中学2018-2019学年高二上学期期末模拟数学(理)试题(解析版)(15页珍藏版)》请在金锄头文库上搜索。

1、2018年秋四川省宜宾市四中高二期末模拟考试数学(理)试题时间:120分钟 满分:150分第卷(选择题 共60分)一选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.从孝感地区中小学生中抽取部分学生,进行肺活量调查经了解,该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大在下面的抽样方法中,最合理的抽样方法是( )A. 简单的随机抽样 B. 按性别分层抽样 C. 按学段分层抽样 D. 系统抽样【答案】C【解析】由于该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大,所

2、以最合理的抽样方法是按按学段分层抽样。选C。2.若,则下列不等关系中不一定成立的是( )A. B. C. D. 【答案】B【解析】【分析】根据不等式的基本性质判断选项是否正确【详解】因为,由不等式的可加性,A正确;由不等式的可乘方性,C正确,由不等式的可开方性,D正确,而根据不等式的可乘性,在不等式两边同乘c,当时,所以B不一定成立,选择B项【点睛】解决此类问题可以根据不等式的基本性质逐一验证,也可用特殊值法排除3.抛物线的焦点坐标是A. B. C. D. 【答案】A【解析】【分析】利用抛物线的标准方程,转化求解即可【详解】抛物线y=-x2的开口向下, ,所以抛物线的焦点坐标故选:A【点睛】本

3、题考查抛物线的简单性质的应用,考查计算能力4.设,则“”是“”的()A. 充要条件 B. 充分不必要条件C. 必要不充分条件 D. 既不充分也不必要条件【答案】B【解析】解得或,故“”是“”的充分不必要条件,选5.一次数学考试后,某老师从自己所带的两个班级中各抽取6人,记录他们的考试成绩,得到如图所示的茎叶图。已知甲班6名同学成绩的平均数为82,乙班6名同学成绩的中位数为77,则( )A. 3 B. C. 4 D. 【答案】C【解析】由 ,可得 ,由 ,得 , ,故选C.6.一只蚂蚁在边长分别为3,4,5的三角形区域内随机爬行,则其恰在离三个顶点距离都大于1的地方的概率为( )A. B. C.

4、 D. 【答案】D【解析】【分析】离三个顶点距离正好等于1的地方是分别以三个顶点为圆心,1为半径的圆弧,所以离三个顶点距离都大于1的地方为该三角形内,分别以三个顶点为顶点,1为半径的扇形区域以外的部分,则蚂蚁在该区域的概率为该区域的面积比三角形区域面积【详解】因为三角形区域边长分别为3,4,5,所以该三角形为直角三角形,面积为,离三个顶点距离正好等于1的地方是分别以三个顶点为圆心,1为半径的圆弧,所以离三个顶点距离都大于1的地方为该三角形内,分别以三个顶点为顶点,1为半径的扇形区域以外的部分,三个扇形的顶角和为,所以三个扇形面积和为,所以蚂蚁在该区域的概率为,选择D项【点睛】求解与面积相关的几

5、何概型问题,关键弄清某事件对应的图形,并准确计算面积7.直线与圆的位置关系是( )A. 相离 B. 相交 C. 相切 D. 不确定【答案】B【解析】【分析】观察直线方程,得直线过定点,判断该点与圆的位置关系,得直线与圆的位置关系【详解】直线过定点,由圆的方程为,所以点A在该圆内,则过该点的直线一定与圆相交,选择B【点睛】判断直线与圆的位置关系问题常见方法:1.几何法,利用圆心到直线的距离与半径比较大小;2.代数法,联立方程组后判断解的个数;3.点与圆的位置关系,利用直线所经过定点与圆的位置关系判断8.抛物线上一点到直线的距离最短的点的坐标是( )A. B. C. D. 【答案】D【解析】【分析

6、】设抛物线y=x2上一点为A(x0,x02),点A(x0,x02)到直线2x-y-4=0的距离由此能求出抛物线y=x2上一点到直线2x-y-4=0的距离最短的点的坐标【详解】设抛物线y=x2上一点为A(x0,x02),点A(x0,x02)到直线2x-y-4=0的距离 当x0=1时,即当A(1,1)时,抛物线y=x2上一点到直线2x-y-4=0的距离最短故选:D【点睛】本题考查抛物线上的点到直线的距离最短的点的坐标的求法,是基础题解题时要认真审题,仔细解答9.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D. 【答案】C【解析】分析:利用正方体中,将问题转化为求共面直线与

7、所成角的正切值,在中进行计算即可.详解:在正方体中,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以则.故选C.点睛:求异面直线所成角主要有以下两种方法:(1)几何法:平移两直线中的一条或两条,到一个平面中;利用边角关系,找到(或构造)所求角所在的三角形;求出三边或三边比例关系,用余弦定理求角.(2)向量法:求两直线的方向向量;求两向量夹角的余弦;因为直线夹角为锐角,所以对应的余弦取绝对值即为直线所成角的余弦值.10.(2017新课标全国卷文科)设A,B是椭圆C:长轴的两个端点,若C上存在点M满足AMB=120,则m的取值范围是A BC D【答案】A【解析】当时,焦点在轴上,

8、要使C上存在点M满足,则,即,得;当时,焦点在轴上,要使C上存在点M满足,则,即,得,故的取值范围为,选A点睛:本题设置的是一道以椭圆知识为背景的求参数范围的问题解答问题的关键是利用条件确定的关系,求解时充分借助题设条件转化为,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论11.已知双曲线 的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同一条渐近线的距离分别为和,且 则双曲线的方程为A. B. C. D. 【答案】A【解析】分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后求解a的值即可确定双曲线方程.详解:设双曲线

9、的右焦点坐标为(c0),则,由可得:,不妨设:,双曲线的一条渐近线方程为,据此可得:,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择A选项.点睛:求双曲线的标准方程的基本方法是待定系数法具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出的值即可.12.已知abc1,且a , b , c0,则 的最小值为( )A. 1 B. 3 C. 6 D. 9【答案】D【解析】 ,当且仅当时等号成立,故选D.【易错点晴】本题主要考查利

10、用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).第卷(非选择题 共90分)二填空题(每题5分,满分20分,将答案填在答题纸上)13.直线与直线互相垂直,则_【答案】或【解析】【分析】由两条直线垂直的充要条件求得m的值【详解】直线与直线互相垂直,所以,即,解得或【点睛】直线与垂直的充要条件为14.若满足约束条件 则的最大值为_【答案】9【

11、解析】分析:作出可行域,根据目标函数的几何意义可知当时,.详解:不等式组表示的可行域是以为顶点的三角形区域,如下图所示,目标函数的最大值必在顶点处取得,易知当时,.点睛:线性规划问题是高考中常考考点,主要以选择及填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等.15.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为_【答案】【解析】分析:由题意利用待定系数法求解圆的方程即可.详解:设圆的方程为,圆经过三点(0,0),(1,1),(2,0),则:,解得:,则圆的方程为.点睛:求圆的方程,主要有两种方法:(1)几何法:具体过

12、程中要用到初中有关圆的一些常用性质和定理如:圆心在过切点且与切线垂直的直线上;圆心在任意弦的中垂线上;两圆相切时,切点与两圆心三点共线(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量一般地,与圆心和半径有关,选择标准式,否则,选择一般式不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式16.已知三棱锥的所有顶点都在球的球面上, 是球的直径,若平面平面,三棱锥的体积为,则球的表面积为_.【答案】36【解析】三棱锥SABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA平面SCB,SA=AC,SB=BC,三棱锥SABC的体积为9,可知三角形SBC

13、与三角形SAC都是等腰直角三角形,设球的半径为r,可得 ,解得r=3.球O的表面积为: .点睛:与球有关的组合体问题,一种是内切,一种是外接解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知命题p:关于x的不等式的解集是,命题q:函数y=的定义域为R.若p是真命题,p是假命题,求实数a的范围.【答案】.【解析】试题分析:根据

14、指数函数的单调性求得命题为真时的取值范围;利用求出命题为真时的范围,由复合命题真值表知:若是真命题,是假命题,则命题、一真一假,分真假和真假两种情况求出的范围,再求并集试题解析:依题意有:对于:0a1,对于:函数定义域为的充要条件是0恒成立.当=0时,不等式为0,解得0,显然不成立;当a0时,解得a.所以对于:.由“或是真命题,且是假命题”,可知,一真一假,当真假时,有的取值范围是当假真时,有的取值范围是.综上,的取值范围是.考点:复合命题的真假.18.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160现采用分层抽样的方法从中抽取名同学去某敬老院参加献爱心活动()应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?()设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率【答案】(1)3,2,2(2)(i)见解析(ii)【解析】分析:()结合人数的比

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号