电力电子单相桥式整流电路课程设计.doc

上传人:xins****2008 文档编号:117188146 上传时间:2019-11-18 格式:DOC 页数:20 大小:441.50KB
返回 下载 相关 举报
电力电子单相桥式整流电路课程设计.doc_第1页
第1页 / 共20页
电力电子单相桥式整流电路课程设计.doc_第2页
第2页 / 共20页
电力电子单相桥式整流电路课程设计.doc_第3页
第3页 / 共20页
电力电子单相桥式整流电路课程设计.doc_第4页
第4页 / 共20页
电力电子单相桥式整流电路课程设计.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

《电力电子单相桥式整流电路课程设计.doc》由会员分享,可在线阅读,更多相关《电力电子单相桥式整流电路课程设计.doc(20页珍藏版)》请在金锄头文库上搜索。

1、 电力电子技术前言电力电子技术又称为功率电子技术,他是用于电能变换和功率控制的电子技术。电力电子技术是弱电控制强电的方法和手段,是当代高新技术发展的重要内容,也是支持电力系统技术革命发展的重要基础,并节能降耗、增产节约提高生产效能的重要技术手段。微电子技术、计算机技术以及大功率电力电子技术的快速发展,极大地推动了电工技术、电气工程和电力系统的技术发展和进步。 电力电子器件是电力电子技术发展的基础。正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。而二十世纪九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。电

2、力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。电力电子技术在电力系统中的应用中也有了长足的发展,电力电子装置与传统的机械式开关操作设备相比有动态响应快,控制方便,灵活的特点,能够显著地改善电力系统的特性,在提高系统稳定、降低运行风险、节约运行成本方面有很大潜力。摘要掌握晶闸管的使用,用晶闸管控制单相桥式全控整流电路(阻感性负载)并画出整流电路中输入输出、各元器件的电压、电流波形,理解单相桥式全控整流电路阻感负载的工作原理和基本计算。选择触发电路的结

3、构,考虑保护电路。目录前言 -1摘要 -1目录 -2 1 设计任务书 1.1.设计任务-5 1.2.技术要求-52 设计内容2.1 方案的选择-53 触发电路的设计 3. 1同步触发电路-6 3. 2 晶闸管的触发条件-7 3. 3 晶闸管的分类-7 3. 4形成与脉冲放大环节-73. 5锯齿波形成与脉冲移相环节-8 3. 6同步信号与主回路的相位关系-8 4驱动电路与保护电路的设计4. 1典型全控型器件的驱动电路-9 4. 2 电力电子器件的保护-10 5. 单相桥式全控整流电路原理说-126元器件和电路参数计算6. 1元件选取-晶闸管(SCR)-136. 2晶闸管的选型 -187 整流变压

4、器额定参数计算7.1 二次相电压U2 -197.2 一次与二次额定电流及容量计算 -208 设计结果分析 -219 心得体会 -2210 参考文献 -23 1.设计任务书1.1.设计任务:1、进行设计方案的比较,并选定设计方案;2、完成单元电路的设计和主要元器件说明;3、完成主电路的原理分析,各主要元器件的选择;4、驱动电路的设计,保护电路的设计;1.2.技术要求:(1)电网供电电压为单相220V; (2)变压器二次侧电压为110V;(3)输出电压连续可调,为0100V;(4)带阻感性负载:L=1000mH,R=1002. 设计内容2.1方案的选择单相相控整流电路可分为单相半波、单相全波和单相

5、桥式相控流电路,它们所连接的负载性质不同就会有不同的特点。下面分析各种单相控整流电路在带电阻性负载、电感性负载和反电动势负载时的工作情况。单相半控整流电路的优点是:线路简单、调整方便。弱点是:输出电压脉动冲大,负载电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。 单相全控式整流电路其输出平均电压是半波整流电路2倍,在相同的负载下流过晶闸管的平均电流减小一半;且功率因数提高了一半。 根据以上的比较分析因此选择的方案为单相全

6、控桥式整流电路(负载为阻感性负载)。 3 触发电路的设计3.1同步触发电路晶闸管最重要的特性是可控的正向导通特性.当晶闸管的阳极加上正向电压后,还必须在门极与阴极之间加上一个具有一定功率的正向触发电压才能打通, 这一正向触发电压的导通是由触发电路提供的,根据具体情况这个电压可以是交流、直流或脉冲电压。由于晶闸管被触发导通以后,门极的触发电压即失去控制作用,所以为了减少门极的触发功率,常常用脉冲触发。触发脉冲的宽度要能维持到晶闸管彻底导通后才能撤掉,晶闸管对触发脉冲的幅值要求是:在门极上施加的触发电压或触发电流应大于产品提出的数据,但也不能太大,以防止损坏其控制极,在有晶闸管串并联的场合,触发脉

7、冲的前沿越陡越有利于晶闸管的同时触发导通。为了保证晶闸管电路能正常,可靠的工作,触发电路必须满足以下要求:触发脉冲应有足够的功率,触发脉冲的电压和电流应大于晶闸管要求的数值,并留有一定的裕量。由闸管的门极伏安特性曲线可知,同一型号的晶闸管的门极伏安特性的分散性很大,所以规定晶闸管元件的门极阻值在某高阻和低阻之间,才可能算是合格的产品。晶闸管器件出厂时,所标注的门极触发电流Igt、门极触发电压U是指该型号的所有合格器件都能被触发导通的最小门极电流、电压值,所以在接近坐标原点处以触发脉冲应一定的宽度且脉冲前沿应尽可能陡。由于晶闸管的触发是有一个过程的,也就是晶闸管的导通需要一定的时间。只有当晶闸管

8、的阳极电流即主回路电流上升到晶闸管的掣住电流以上时,晶闸管才能导通,所以触发信号应有足够的宽度才能保证被触发的晶闸管可靠的导通,对于电感性负载,脉冲的宽度要宽些,一般为0.51MS,相当于50HZ、18度电度角。为了可靠地、快速地触发大功率晶闸管,常常在 触发脉冲的前沿叠加上一个触发脉冲。触发脉冲的相位应能在规定范围内移动。例如单相全控桥式整流电路带电阻性负载时,要求触发脉冲的移项范围是0度180度,带大电感负载时,要求移项范围是0度90度;三相半波可控整流电路电阻性负载时,要求移项范围是0度90度。同步电压:来自同步电源(同步电源变压器),经锯齿波形成电路,得到与电源同步的锯齿波电压。缺少同

9、步电压则不能形成锯齿波电压,将无触发脉冲;锯齿波电压:锯齿波电压与控制电压,偏移电压叠加,在其交叉点形成触发脉冲;没有锯齿波电压,也将无触发脉冲;控制电压:工作时,控制其大小,实现在需要的范围内移相;偏移电压:与控制电压叠加,以确定控制电压为零时,触发脉冲的初始位相位。如果缺少偏移电压,或偏移电压不当,将不能在需要的范围内移相。触发脉冲与主电路电源必须同步。为了使晶闸管在每一个周期都以相同的控制角被触发导通,触发脉冲必须与电源同步,两者的频率应该相同,而且要有固定的相位关系,以使每一周期都能在同样的相位上触发。触发电路同时受控于电压uc与同步电压us控制。3.2晶闸管的触发条件(1): 晶闸管

10、承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通; (2):晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管都才能导通;(3):晶闸管一旦导通门极旧失去控制作用;(4):要使晶闸管关断,只能使其电流小到零一下.3.3晶闸管的分类晶闸管分为:快速晶闸管,逆导晶闸管,双向晶闸管,光控晶闸管,门极可关断晶闸管(GTO),电力晶闸管(GTR),功率场效应晶闸管(MOSFET),绝缘珊双极晶闸管(IGBT),MOS控制晶闸管,集成门极换向晶闸管.静电感应晶体管。3.4 形成与脉冲放大环节脉冲的形成环节由晶闸管V4、V5组成,V7、V8组成脉冲功率放大环节。控制、电压uct和负偏移相电压up分别经过电阻R6、R7、R8并联接入V4基极。在分析该环节时,暂不考虑锯齿波电压ue3和负偏电压up对电路的影响。对控制电压uct=0时,V4截止,+15V电源通过电阻R11供给V5一个足够大的基极电流,使V5饱和导通,V5的集电极电压接近-15V,所以V7、V8截止,无

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号