实验三 数字PID控制.

上传人:最**** 文档编号:116995722 上传时间:2019-11-18 格式:DOC 页数:22 大小:2.17MB
返回 下载 相关 举报
实验三 数字PID控制._第1页
第1页 / 共22页
实验三 数字PID控制._第2页
第2页 / 共22页
实验三 数字PID控制._第3页
第3页 / 共22页
实验三 数字PID控制._第4页
第4页 / 共22页
实验三 数字PID控制._第5页
第5页 / 共22页
点击查看更多>>
资源描述

《实验三 数字PID控制.》由会员分享,可在线阅读,更多相关《实验三 数字PID控制.(22页珍藏版)》请在金锄头文库上搜索。

1、实验三 数字PID控制一、实验目的1研究PID控制器的参数对系统稳定性及过渡过程的影响。2研究采样周期T对系统特性的影响。3研究I型系统及系统的稳定误差。二、实验仪器1EL-AT-III型计算机控制系统实验箱一台2PC计算机一台三、实验内容1系统结构图如3-1图。图3-1 系统结构图图中 Gc(s)=Kp(1+Ki/s+Kds) Gh(s)=(1e-TS)/s Gp1(s)=5/(0.5s+1)(0.1s+1) Gp2(s)=1/(s(0.1s+1)2开环系统(被控制对象)的模拟电路图如图3-2和图3-3,其中图3-2对应GP1(s),图3-3对应Gp2(s)。 图3-2 开环系统结构图1 图

2、3-3开环系统结构图23被控对象GP1(s)为“0型”系统,采用PI控制或PID控制,可系统变为“I型”系统,被控对象Gp2(s)为“I型”系统,采用PI控制或PID控制可使系统变成“II型”系统。 4当r(t)=1(t)时(实际是方波),研究其过渡过程。 5PI调节器及PID调节器的增益 Gc(s)=Kp(1+K1/s) =KpK1((1/k1)s+1) /s =K(Tis+1)/s式中 K=KpKi , Ti=(1/K1)不难看出PI调节器的增益K=KpKi,因此在改变Ki时,同时改变了闭环增益K,如果不想改变K,则应相应改变Kp。采用PID调节器相同。6“II型”系统要注意稳定性。对于G

3、p2(s),若采用PI调节器控制,其开环传递函数为 G(s)=Gc(s)Gp2(s) =K(Tis+1)/s1/s(0.1s+1)为使用环系统稳定,应满足Ti0.1,即K1107PID递推算法 如果PID调节器输入信号为e(t),其输送信号为u(t),则离散的递推算法如下: u(k)=u(k-1)+q0e(k)+q1e(k-1)+q2e(k-2)其中 q0=Kp(1+KiT+(Kd/T) q1=Kp(1+(2Kd/T) q2=Kp(Kd/T)T-采样周期四、实验步骤 1.连接被测量典型环节的模拟电路(图3-2)。电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的A

4、D1输入。检查无误后接通电源。2.启动计算机,双击桌面“计算机控制实验”快捷方式,运行软件。3.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使通信正常后才可以继续进行实验。4. 在实验项目的下拉列表中选择实验三数字PID控制, 鼠标单击鼠标单击按钮,弹出实验课题参数设置窗口。5.输入参数Kp, Ki, Kd(参考值Kp=1, Ki=0.02, kd=1)。6.参数设置完成点击确认后观察响应曲线。若不满意,改变Kp, Ki, Kd的数值和与其相对应的性能指标sp、ts的数值。7.取满意的Kp,Ki,Kd值,观查有无稳态误差。8.断开电源,连接被测量典型环节的模拟电路(图3

5、-3)。电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将纯积分电容的两端连在模拟开关上。检查无误后接通电源。 9.重复4-7步骤。10.计算Kp,Ki,Kd取不同的数值时对应的sp、ts的数值,测量系统的阶跃响应曲线及时域性能指标,记入表中:实验结果参数%Ts阶跃响应曲线KpKiKd10.02143.8%1.29910.01125.9%1.11210.01231.2%1.16810.02240.3%1.95420.02 436.7%0.9141 0.02 1 1 0.01 11 0.01 2 1 0.02 22 0.02 4五、实验报告1画出所做实

6、验的模拟电路图。2 当被控对象为Gp1(s时)取过渡过程为最满意时的Kp, Ki, Kd,画出校正后的Bode图,查出相稳定裕量g和穿越频率wc。 3总结一种有效的选择Kp, Ki, Kd方法,以最快的速度获得满意的参数。先通过改变Kp的值,使Kp满足要求,再改变Ki,最后是Kd,通过这样一次改变参数的方法可以很快的达到满意的效果。参数整定(试凑法)增大比例系数Kp,一般加快系统响应,在有静差的情况下有利于减小静差,但过大的比例系数会使系统有较大超调,并产生震荡,使稳定性变坏;增大积分时间Ti,有利于减小超调,减小震荡,使系统更加稳定,但系统静差的消除将随之减慢;增大微分时间Td,亦有利于加快

7、系统响应,使超调亮减小,稳定性增加,但对系统的扰动抑制能力减弱,对扰动有较敏感的响应;另外,过大的微分系数也将使得系统的稳定性变坏。实验六 大林算法一、实验目的1掌握大林算法的特点及适用范围。2了解大林算法中时间常数T对系统的影响。二、实验仪器1EL-AT-III型计算机控制系统实验箱一台2PC计算机一台三、实验内容1实验被控对象的构成: (1)惯性环节的仿真电路及传递函数 G(S)=-2/(T1+1) T1=0.2 (2)纯延时环节的构成与传递函数 G(s)=e-Nt t=采样周期 N为正整数的纯延时个数 由于纯延时环节不易用电路实现,在软件中由计算机实现。 图61 被控对象电路图 (3)被

8、控对象的开环传函为: G(S)=-2e-Nt/(T1+1) 2大林算法的闭环传递函数: Go(s)=e-Nt/(Ts+1) T=大林时间常数 3大林算法的数字控制器:D(Z)=(1-et/T)(1-e-t/T1Z-1)/k(1-e-t/T1)1-e-t/TZ-1-(1-e-t/T)Z-N-1 设k1=e-t/T K2=e-t/T1 T1=0.2 T=大林常数 K=2 (K-Kk2)Uk=(1-k1)ek-(1-k1)k2ek-1+(k-kk2)k1Uk-1+(k-kk2)(1-k1)Uk-N-1四、实验步骤1启动计算机,双击桌面“计算机控制实验”快捷方式,运行软件。2测试计算机与实验箱的通信是

9、否正常,通信正常继续。如通信不正常查找原因使通信正常后才可以继续进行实验。3量对象的模拟电路(图6-1)。电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。4在实验项目的下拉列表中选择实验六六、大林算法, 鼠标单击按钮,弹出实验课题参数设置对话框,在参数设置窗口设置延迟时间和大林常数,点击确认在观察窗口观测系统响应曲线。测量系统响应时间Ts和超调量sp。5 复步骤4,改变参数设置,将所测的波形进行比较。并将测量结果记入下表中:性能指标参数设置阶跃响应曲线%Ts(秒)Tp(秒)延迟时间大林常数20.501.3422.31510.501

10、.4432.53440.501.0231.93410.801.9233.2642 0.5 1 0.5 4 0.5 2 0.8五、实验报告 1分析开环系统下的阶跃响应曲线。答:开环系统下的阶跃响应曲线会有较大的超调量和持续的震荡,使得系统的稳定性降低,对控制系统的控制性能极为不利。 2分析大林时间常数对系统稳定性的影响。答:随着大林常数的增大,系统响应的调节时间Ts和达到峰值的时间Tp都增大了,但是对超调量影响不大,所以使得系统的稳定性减弱。六、大林算法软件流程图图中ek为误差,ek1为上一次的误差,uk是控制量,uk1是上一次的控制量ukn1是上N+1次的控制量画希望值曲线初始化系统输出希望值

11、start初始化ek ,ek1,ek2,uk初始化控制步数、采样点数Point求K1、K2、K3 使硬件被控对象初始化值输出等于0采集硬件被控对象的输出inputf inputf浮点化inputf延迟N步求ek=start-inputf(K-Kk2)Uk=(1-k1)ek-(1-k1)k2ek1+(k-kk2)k1Uk1+(k-kk2)(1-k1)Ukn1判uk是否超上下限 输出uk ek1=ek Ukn1更新画被控对象第J点输出inputf J+1JPoint结束 实验七 炉温控制实验一、实验目的 1了解温度控制系统的特点。 2研究采样周期T对系统特性的影响。 3研究大时间常数系统PID控制器的参数的整定方法。二、实验仪器1EL-AT-III型计算机控制系统实验箱一台2PC计算机一台3炉温控制实验对象一台三、炉温控制的基本原理1 系统结构图示于图71。图71 系统结构图 图中 Gc(s)=Kp(1+Ki/s+Kds) Gh(s)=(1e-TS)/s Gp(s)=1/(Ts+1)

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号