半导体硅片的化学清洗专业技术

上传人:千****8 文档编号:115843952 上传时间:2019-11-15 格式:DOC 页数:9 大小:115.50KB
返回 下载 相关 举报
半导体硅片的化学清洗专业技术_第1页
第1页 / 共9页
半导体硅片的化学清洗专业技术_第2页
第2页 / 共9页
半导体硅片的化学清洗专业技术_第3页
第3页 / 共9页
半导体硅片的化学清洗专业技术_第4页
第4页 / 共9页
半导体硅片的化学清洗专业技术_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《半导体硅片的化学清洗专业技术》由会员分享,可在线阅读,更多相关《半导体硅片的化学清洗专业技术(9页珍藏版)》请在金锄头文库上搜索。

1、半导体硅片的化学清洗技术 作者: 日期:9 半导体硅片的化学清洗技术一. 硅片的化学清洗工艺原理硅片经过不同工序加工后,其表面已受到严重沾污,一般讲硅片表面沾污大致可分在三类:A. 有机杂质沾污: 可通过有机试剂的溶解作用,结合超声波清洗技术来去除。B. 颗粒沾污:运用物理的方法可采机械擦洗或超声波清洗技术来去除粒径 0.4 m颗粒,利用兆声波可去除 0.2 m颗粒。C. 金属离子沾污:必须采用化学的方法才能清洗其沾污,硅片表面金属杂质沾污有两大类:a. 一类是沾污离子或原子通过吸附分散附着在硅片表面。b. 另一类是带正电的金属离子得到电子后面附着(尤如“电镀”)到硅片表面。硅抛光片的化学清洗

2、目的就在于要去除这种沾污,一般可按下述办法进行清洗去除沾污。a. 使用强氧化剂使“电镀”附着到硅表面的金属离子、氧化成金属,溶解在清洗液中或吸附在硅片表面。 b. 用无害的小直径强正离子(如H+)来替代吸附在硅片表面的金属离子,使之溶解于清洗液中。c. 用大量去离水进行超声波清洗,以排除溶液中的金属离子。自1970年美国RCA实验室提出的浸泡式RCA化学清洗工艺得到了广泛应用,1978年RCA实验室又推出兆声清洗工艺,近几年来以RCA清洗理论为基础的各种清洗技术不断被开发出来,例如 : 美国FSI公司推出离心喷淋式化学清洗技术。 美国原CFM公司推出的Full-Flow systems封闭式溢

3、流型清洗技术。 美国VERTEQ公司推出的介于浸泡与封闭式之间的化学清洗技术(例Goldfinger Mach2清洗系统)。 美国SSEC公司的双面檫洗技术(例M3304 DSS清洗系统)。 日本提出无药液的电介离子水清洗技术(用电介超纯离子水清洗)使抛光片表面洁净技术达到了新的水平。 以HF / O3为基础的硅片化学清洗技术。目前常用H2O2作强氧化剂,选用HCL作为H+的来源用于清除金属离子。SC-1是H2O2和NH4OH的碱性溶液,通过H2O2的强氧化和NH4OH的溶解作用,使有机物沾污变成水溶性化合物,随去离子水的冲洗而被排除。由于溶液具有强氧化性和络合性,能氧化Cr、Cu、Zn、Ag

4、、Ni、Co、Ca、Fe、Mg等使其变成高价离子,然后进一步与碱作用,生成可溶性络合物而随去离子水的冲洗而被去除。为此用SC-1液清洗抛光片既能去除有机沾污,亦能去除某些金属沾污。SC-2是H2O2和HCL的酸性溶液,它具有极强的氧化性和络合性,能与氧以前的金属作用生成盐随去离子水冲洗而被去除。被氧化的金属离子与CL-作用生成的可溶性络合物亦随去离子水冲洗而被去除。在使用SC-1液时结合使用兆声波来清洗可获得更好的效果。二. RCA清洗技术传统的RCA清洗技术:所用清洗装置大多是多槽浸泡式清洗系统清洗工序: SC-1 DHF SC-21. SC-1清洗去除颗粒: 目的:主要是去除颗粒沾污(粒子

5、)也能去除部分金属杂质。 去除颗粒的原理:硅片表面由于H2O2氧化作用生成氧化膜(约6nm呈亲水性),该氧化膜又被NH4OH腐蚀,腐蚀后立即又发生氧化,氧化和腐蚀反复进行,因此附着在硅片表面的颗粒也随腐蚀层而落入清洗液内。 自然氧化膜约0.6nm厚,其与NH4OH、H2O2浓度及清洗液温度无关。 SiO2的腐蚀速度,随NH4OH的浓度升高而加快,其与H2O2的浓度无关。 Si的腐蚀速度,随NH4OH的浓度升高而快,当到达某一浓度后为一定值,H2O2浓度越高这一值越小。 NH4OH促进腐蚀,H2O2阻碍腐蚀。 若H2O2的浓度一定,NH4OH浓度越低,颗粒去除率也越低,如果同时降低H2O2浓度,

6、可抑制颗粒的去除率的下降。 随着清洗洗液温度升高,颗粒去除率也提高,在一定温度下可达最大值。 颗粒去除率与硅片表面腐蚀量有关,为确保颗粒的去除要有一 定量以上的腐蚀。 超声波清洗时,由于空洞现象,只能去除 0.4 m 颗粒。兆声清洗时,由于0.8Mhz的加速度作用,能去除 0.2 m 颗粒,即使液温下降到40也能得到与80超声清洗去除颗粒的效果,而且又可避免超声洗晶片产生损伤。 在清洗液中,硅表面为负电位,有些颗粒也为负电位,由于两者的电的排斥力作用,可防止粒子向晶片表面吸附,但也有部分粒子表面是正电位,由于两者电的吸引力作用,粒子易向晶片表面吸附。. 去除金属杂质的原理: 由于硅表面的氧化和

7、腐蚀作用,硅片表面的金属杂质,将随腐蚀层而进入清洗液中,并随去离子水的冲洗而被排除。 由于清洗液中存在氧化膜或清洗时发生氧化反应,生成氧化物的自由能的绝对值大的金属容易附着在氧化膜上如:Al、Fe、Zn等便易附着在自然氧化膜上。而Ni、Cu则不易附着。 Fe、Zn、Ni、Cu的氢氧化物在高PH值清洗液中是不可溶的,有时会附着在自然氧化膜上。 实验结果:a. 据报道如表面Fe浓度分别是1011、1012、1013 原子/cm2三种硅片放在SC-1液中清洗后,三种硅片Fe浓度均变成1010 原子/cm2。若放进被Fe污染的SC-1清洗液中清洗后,结果浓度均变成1013/cm2。b. 用Fe浓度为1

8、ppb的SC-1液,不断变化温度,清洗后硅片表面的Fe浓度随清洗时间延长而升高。对应于某温度洗1000秒后,Fe浓度可上升到恒定值达101241012 原子/cm2。将表面Fe浓度为1012 原子/cm2硅片,放在浓度为1ppb的SC-1液中清洗,表面Fe浓度随清洗时间延长而下降,对应于某一温度的SC-1液洗1000秒后,可下降到恒定值达4101061010 原子/cm2。这一浓度值随清洗温度的升高而升高。从上述实验数据表明:硅表面的金属浓度是与SC-1清洗液中的金属浓度相对应。晶片表面的金属的脱附与吸附是同时进行的。即在清洗时,硅片表面的金属吸附与脱附速度差随时间的变化到达到一恒定值。以上实

9、验结果表明:清洗后硅表面的金属浓度取决于清洗液中的金属浓度。其吸附速度与清洗液中的金属络合离子的形态无关。c. 用Ni浓度为100ppb的SC-1清洗液,不断变化液温,硅片表面的Ni浓度在短时间内到达一恒定值、即达101231012原子/cm2。这一数值与上述Fe浓度1ppb的SC-1液清洗后表面Fe浓度相同。这表明Ni脱附速度大,在短时间内脱附和吸附就达到平衡。 清洗时,硅表面的金属的脱附速度与吸附速度因各金属元素的不同而不同。特别是对Al、Fe、Zn。若清洗液中这些元素浓度不是非常低的话,清洗后的硅片表面的金属浓度便不能下降。对此,在选用化学试剂时,按要求特别要选用金属浓度低的超纯化学试剂

10、。例如使用美国Ashland试剂,其CR-MB级的金属离子浓度一般是:H2O2 10ppb 、HCL 10ppb、NH4OH 10ppb、H2SO410ppb 清洗液温度越高,晶片表面的金属浓度就越高。若使用兆声波清洗可使温度下降,有利去除金属沾污。 去除有机物。由于H2O2的氧化作用,晶片表面的有机物被分解成CO2、H2O而被去除。 微粗糙度。晶片表面Ra与清洗液的NH4OH组成比有关,组成比例越大,其Ra变大。Ra为0.2nm的晶片,在NH4OH: H2O2: H2O =1:1:5的SC-1液清洗后,Ra可增大至0.5nm。为控制晶片表面Ra,有必要降低NH4OH的组成比,例用0.5:1:

11、5 COP(晶体的原生粒子缺陷)。对CZ硅片经反复清洗后,经测定每次清洗后硅片表面的颗粒 2 m 的颗粒会增加,但对外延晶片,即使反复清洗也不会使 0.2 m 颗粒增加。据近几年实验表明,以前认为增加的粒子其实是由腐蚀作用而形成的小坑。在进行颗粒测量时误将小坑也作粒子计入。小坑的形成是由单晶缺陷引起,因此称这类粒子为COP(晶体的原生粒子缺陷)。据介绍直径200 mm 硅片按SEMI要求:256兆 0.13 m,10个/ 片,相当COP约40个。2.DHF清洗。a. 在DHF洗时,可将由于用SC-1洗时表面生成的自然氧化膜腐蚀掉,而Si几乎不被腐蚀。b. 硅片最外层的Si几乎是以 H 键为终端

12、结构,表面呈疏水性。c. 在酸性溶液中,硅表面呈负电位,颗粒表面为正电位,由于两者之间的吸引力,粒子容易附着在晶片表面。d. 去除金属杂质的原理: 用HF清洗去除表面的自然氧化膜,因此附着在自然氧化膜上的金属再一次溶解到清洗液中,同时DHF清洗可抑制自然氧化膜的形成。故可容易去除表面的Al、Fe、Zn、Ni等金属。但随自然氧化膜溶解到清洗液中一部分Cu等贵金属(氧化还原电位比氢高),会附着在硅表面,DHF清洗也能去除附在自然氧化膜上的金属氢氧化物。 实验结果:据报道Al3+、Zn2+、Fe2+、Ni2+ 的氧化还原电位E0 分别是 - 1.663V、-0.763V、-0.440V、0.250V

13、比H+ 的氧化还原电位(E0=0.000V)低,呈稳定的离子状态,几乎不会附着在硅表面。 如硅表面外层的Si以 H 键结构,硅表面在化学上是稳定的,即使清洗液中存在Cu等贵金属离子,也很难发生Si的电子交换,因经Cu等贵金属也不会附着在裸硅表面。但是如液中存在Cl 、Br等阴离子,它们会附着于Si表面的终端氢键不完全地方,附着的Cl 、Br阴离子会帮助Cu离子与Si电子交换,使Cu离子成为金属Cu而附着在晶片表面。 因液中的Cu2+ 离子的氧化还原电位(E0=0.337V)比Si的氧化还原电位(E0=-0.857V)高得多,因此Cu2+ 离子从硅表面的Si得到电子进行 还原,变成金属Cu从晶片

14、表面析出,另一方面被金属Cu附着的Si释放与Cu的附着相平衡的电子,自身被氧化成SiO2。 从晶片表面析出的金属Cu形成Cu粒子的核。这个Cu粒子核比Si的负电性大,从Si吸引电子而带负电位,后来Cu离子从带负电位的Cu粒子核 得到电子析出金属Cu,Cu粒子状这样生长起来。Cu下面的Si一面供给与Cu的附着相平衡的电子,一面生成SiO2。 在硅片表面形成的SiO2,在DHF清洗后被腐蚀成小坑,其腐蚀小坑数量与去除Cu粒子前的Cu粒子量相当,腐蚀小坑直径为0.01 0.1 m,与Cu粒子大小也相当,由此可知这是由结晶引起的粒子,常称为金属致粒子(MIP)。3. SC-2清洗1). 清洗液中的金属附着现象在碱性清洗液中易发生,在酸性溶液中不易发生,并具有较强的去除晶片表面金属的能力,但经SC-1洗后虽能去除Cu等金属,而晶片表面形成的自然氧化膜的附着(特别是Al)问题还未解决。2). 硅片表面经SC-2液洗后,表面Si大部分以 O 键为终端结构,形成一层自然氧化膜,呈亲水性。3). 由于晶片表面的SiO2和Si不能被腐蚀,因此不能达到去除粒子的效果。a.实验表明:据报道将经过SC-2液,洗后的硅片分别放到添加Cu的DHF清洗或HF+H2O2清洗液中清洗、硅片表

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 教学课件 > 高中课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号