遥感图像处理课程设计指导书1

上传人:今*** 文档编号:109586195 上传时间:2019-10-27 格式:DOC 页数:27 大小:101.05KB
返回 下载 相关 举报
遥感图像处理课程设计指导书1_第1页
第1页 / 共27页
遥感图像处理课程设计指导书1_第2页
第2页 / 共27页
遥感图像处理课程设计指导书1_第3页
第3页 / 共27页
遥感图像处理课程设计指导书1_第4页
第4页 / 共27页
遥感图像处理课程设计指导书1_第5页
第5页 / 共27页
点击查看更多>>
资源描述

《遥感图像处理课程设计指导书1》由会员分享,可在线阅读,更多相关《遥感图像处理课程设计指导书1(27页珍藏版)》请在金锄头文库上搜索。

1、遥感图像处理课程设计指导书1 概述1.1 课程设计任务、性质与目标遥感图像处理课程介绍了遥感图像处理的基础知识、图像校正、图像增强、图像分类以及图像分析等方面的内容,并介绍基本方法。遥感图像处理课程设计使学生掌握遥感图像处理的基本方法,掌握对不同任务进行不同处理的基本流程以及采用不同的处理方法。1.2 课程设计过程及考核时限:课程设计任务在2周内完成。方式:采取分组选题的方式。提交材料:1. 课程设计报告书(按照课程设计报告书规范格式排版打印) 考核与成绩确定:根据课程设计报告书质量和对程序的测试运行结果评定成绩等级,分为优秀、良好、中、及格和不及格5个等级。2 预备知识主要介绍遥感图像处理的

2、基本方法。2.1 图像校正主要内容 l 数字图像的性质与特点l 辐射校正 l 图像的几何畸变 l 几何校正的方法 l 几何校正的重采样、内插方法数字图像遥感数据的表示既有模拟图像又有数字图像。 模拟图像:普通像片那样的灰度级及颜色连续变化的图像 数字图像:而是以数字形式表示的遥感影像。 包括把模拟图像数字化的图像。 数字图像的性质与特点 把模拟图像分割成同样形状的小单元,进行空间离散化处理叫采样(sampling)。 以各个小单元的平均亮度值或中心部分的亮度值作为该单元的亮度值,为亮度值的离散化处理,即量化(quantization)。 以上两种过程结合起来叫图像的数字化 (digitizat

3、ion)。 由于传感器上探测元件的灵敏度直接影响有效量化的级数,因此,不同传感器提供的有效量化的级数是不同的。 像素(像元)是遥感数字图像最基本的单位,是成像过程的采样点,也是计算机图像处理的最小单元。像素具有空间特征和属性特征。 由于传感器从空间观测地球表面,因此每个像素含有特定的地理位置的信息,并表征一定的面积。对于多光谱扫描仪提供的数字图像来说,一个像素对应的地表面积是由传感器上瞬间视场角所决定的,瞬间视场角在地表的投影面称地面分辨率(或空间分辨率),由于传感器种类不同,它的瞬间视场角也不同,因此,对应的地面分辨率是不同的。 像素的属性特征采用亮度值来表达,在不同波段上,相同地点的亮度值

4、可能是不同的,这是因为地物在不同波段上辐射电磁波的特征不同造成的。 遥感数字图像中像素的数值是由传感器所探测到的地面目标地物的电磁辐射强度决定的。入射到传感器中的电磁波被探测器元件转化为电信号,经过模/数转换,成为绝对辐射亮度值R。为便于应用,R又被转换为能够表征地物辐射亮度的相对值。像素有正像素和混合像素之分。正像素:像素内只包含一种地物。如水体,它的亮度值代表了水体的光谱特征。混合像素:像素内包括两种或两种以上地物。如出苗不久的麦田,它的一个像素亮度位内包含麦苗和土壤的光谱特征。 l 数字图像的特点 便于计算机处理与分析:计算机是以二进制方式处理各种数据的。采用数字形式表示遥感图像,便于计

5、算机处理。因此,与光学图像处理方式相比,遥感数字图像是一种适于计算机处理的图像表示方法。 图像信息损失低:由于遥感数字图像是用二进制表示的,因此在获取、传输和分发过程中,不会因长期存储而损失信息,也不会因多次传输和复制而产生图像失真。而模拟方法表现的遥感图像会因多次复制而使图像质量下降。 抽象性强:尽管不同类别的遥感数字图像,有不同的视觉效果,对应不同的物理背景,但由于它们都采用数字形式表示,便于建立分析模型,进行计算机解译和运用遥感图像专家系统。多波段数字图像的数据格式 l BSQ方式(band sequential) 各波段的二维图像数据按波段顺序排列。l BIL方式(band inter

6、leaved by line) 对每一行中代表一个波段的光谱值进行排列,然后按波段顺序排列该行,最后对各行进行重复。l BIP方式(band interleaved by pixel) 在一行中,每个像元按光谱波段次序进行排列,然后对该行的全部像元进行这种波段次序排列,最后对各行进行重复。l 辐射校正(radiometric correction) :消除辐射量失真 利用遥感器观测目标物辐射或反射的电磁能量时,从遥感器得到的测量值与目标物的光谱反射率或光谱辐射亮度等物理量是不一致的,这是因为测量值中包含太阳位置及角度条件、薄雾等大气条件所引起的失真。为了正确评价目标物的反射特性及辐射特性,必须

7、消除这些失真。 引起辐射畸变的因素:遥感器的灵敏度特性、太阳高度及地形、大气等。l 由遥感器的灵敏度特性引起的畸变校正由光学系统的特性引起的畸变校正:在使用透镜的光学系统中,例如在摄像面中,存在着边缘部分比中心部分发暗的现象(边缘减光)。如果以光轴到摄象面边缘的视场角为,则理想的光学系统中某点的光量与太阳高度及地形等引起的畸变校正 视场角和太阳角的关系引起的亮度变化的校正:太阳光在地表反射、扩散时,其边缘更亮的现象叫太阳光点(sun spot),太阳高度高时容易产生。太阳光点与边缘减光等都可以用推算阴影曲面的方法进行校正。阴影曲面是指在图像的明暗范围内,由太阳光点及边缘减光引起的畸变部分。 地

8、形倾斜的影响校正:当地形倾斜时,经过地表扩散、反射再入射到遥感器的太阳光的辐射亮度就会依倾斜度而变化。可以采取用地表的法线矢量和太阳光入射矢量的夹角进行校正的方法,以及对消除了光路辐射成分的图像数据采用波段间的比值进行校正的方法等。 由遥感器引起的误差或由太阳高度引起的误差,一般在数据生产过程中由生产单位根据遥感器参数进行校正,而不需要用户进行自行处理。用户应该考虑大气影响引起的辐射畸变。大气影响的粗略纠正 中的附加项和附加因子求出,最终求出地物反射率R,从而恢复遥感影像中地面目标的真实面目。当大气透过率变化不大时,有时只要去掉含ED和Lp的数据项就可修正图像的亮度,使图像中像元之间的亮度变化

9、真正反映不同像元地物反射率之间的变化关系。这种对大气影响的纠正是通过纠正辐射亮度的办法实现的,因此也称作辐射校正。 精确的校正公式需要找出每个波段像元亮度值与地物反射率的关系。为此需得到卫星飞行时的大气参数,以求出透过率T、T等因子。如果不通过特别的观测,一般很难得到这些数据,所以,常常采用一些简化的处理方法,只去掉主要的大气影响,使图像质量满足基本要求。 l 直方图最小值去除法 基本思想在于一幅图像中总可以找到某种或某几种地物,其辐射亮度或反射率接近0,例如,地形起伏地区山的阴影处,反射率极低的深海水体处等,这时在图像中对应位置的像元亮度值应为0。实测表明,这些位置上的像元亮度不为零。这个值

10、就应该是大气散射导致的程辐射度值。 具体校正方法十分简单,首先确定条件满足,即该图像上确有辐射亮度或反射亮度应为零的地区,则亮度最小值必定是这一地区大气影响的程辐射度增值。校正时,将每一波段中每个像元的亮度值都减去本波段的最小值。使图像亮度动态范围得到改善,对比度增强,从而提高了图像质量。 l 回归分析法 假定某红外波段,存在程辐射为主的大气影响,且亮度增值最小,接近于零,设为波段a。现需要找到其他波段相应的最小值,这个值一定比a波段的最小值大一些,设为波段b,分别以a,b波段的像元亮度值为坐标,作二维光谱空间,两个波段中对应像元在坐标系内用一个点表示。由于波段之间的相关性,通过回归分析在众多

11、点中一定能找到一条直线与波段b的亮度Lb轴相交。 几何校正当遥感图像在几何位置上发生了变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等畸变时,即说明遥感影像发生了几何畸变。遥感影像的总体变形(相对于地面真实形态而言)是平移、缩放、旋转、偏扭、弯曲及其他变形综合作用的结果。产生畸变的图像给定量分析及位置配准造成困难,因此遥感数据接收后,首先由接收部门进行校正,这种校正往往根据遥感平台、地球、传感器的各种参数进行处理。而用户拿到这种产品后,由于使用目的不同或投影及比例尺的不同,仍旧需要作进一步的几何校正。 l 遥感影像变形的原因 遥感器的内部畸变:由遥感器结构引起的畸变

12、。 遥感平台位置和运动状态变化的影响 地形起伏的影响 地球表面曲率的影响 大气折射的影响 地球自转的影响 遥感影像变形的原因l 遥感平台位置和运动状态变化的影响 无论是卫星还是飞机,运动过程中都会由于种种原因产生飞行姿势的变化从而引起影像变形。 航高:当平台运动过程中受到力学因素影响,产生相对于原标准航高的偏离,或者说卫星运行的轨道本身就是椭圆的。航高始终发生变化,而传感器的扫描视场角不变,从而导致图像扫描行对应的地面长度发生变化。航高越向高处偏离,图像对应的地面越宽 l 遥感平台位置和运动状态变化的影响 航速:卫星的椭圆轨道本身就导致了卫星飞行速度的不均匀,其他因素也可导致遥感平台航速的变化

13、。航速快时,扫描带超前,航速慢时,扫描带滞后,由此可导致图像在卫星前进方向上(图像上下方向)的位置错动。 l 遥感平台位置和运动状态变化的影响 俯仰:遥感平台的俯仰变化能引起图像上下方向的变化,即星下点俯时后移,仰时前移,发生行间位置错动。 l 遥感平台位置和运动状态变化的影响 翻滚:遥感平台姿态翻滚是指以前进方向为轴旋转了一个角度。可导致星下点在扫描线方向偏移,使整个图像的行向翻滚角引起偏离的方向错动。 l 遥感平台位置和运动状态变化的影响 偏航:指遥感平台在前进过程中,相对于原前进航向偏转了一个小角度,从而引起扫描行方向的变化,导致图像的倾斜畸变。l 地形起伏的影响 当地形存在起伏时,会产

14、生局部像点的位移,使原来本应是地面点的信号被同一位置上某高点的信号代替。由于高差的原因,实际像点P距像幅中心的距离相对于理想像点P0距像幅中心的距离移动了r。l 地表曲率的影响 地球是球体,严格说是椭球体,因此地球表面是曲面。这一曲面的影响主要表现在两个方面,一是像点位置的移动,当选择的地图投影平面是地球的切平面时,使地面点P0相对于投影平面点P有一高差h。 遥感影像变形的原因几何畸变校正 从具有几何畸变的图像中消除畸变的过程。也可以说是定量地确定图像上的像元坐标(图像坐标)与目标物的地理坐标(地图坐标等)的对应关系(坐标变换式)。 l 几何校正的方法 系统性校正:当知道了消除图像几何畸变的理

15、论校正公式时,可把该式中所含的与遥感器构造有关的校准数据(焦距等)及遥感器的位置、姿态等的测量值代入到理论校正式中进行几何校正。该方法对遥感器的内部畸变大多是有效的。可是在很多情况下,遥感器的位置及姿态的测量值精度不高,所以外部畸变的校正精度也不高。 非系统性校正:利用控制点的图像坐标和地图坐标的对应关系,近似地确定所给的图像坐标系和应输出的地图坐标系之间的坐标变换式。坐标变换式经常采用1次、2次等角变换式,2次、3次投影变换式或高次多项式。坐标变换式的系数可从控制点的图像坐标值和地图坐标值中根据最小2乘法求出。 复合校正:把理论校正式与利用控制点确定的校正式组合起来进行校正。 分阶段校正的方法,即首先根据理论校正式消除几何畸变(如内部畸变等),然后利用少数控制点,根据所确定的低次校正式消除残余的畸变(外部畸变等); 提高几何校正精度的方法,即利用控制点以较高的精度推算理论校正式中所含的遥感器参数、遥感器的位置及姿态参数。 l 具体步骤重采样重采样的两种方法 对输入图像的各个象元在变换后的输出图像坐标系上的相应位置进行计算,把各个象元的数据投影到该位置上。 对输出图像的

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号