第二章光学导论

上传人:今*** 文档编号:108058063 上传时间:2019-10-22 格式:PPT 页数:63 大小:947KB
返回 下载 相关 举报
第二章光学导论_第1页
第1页 / 共63页
第二章光学导论_第2页
第2页 / 共63页
第二章光学导论_第3页
第3页 / 共63页
第二章光学导论_第4页
第4页 / 共63页
第二章光学导论_第5页
第5页 / 共63页
点击查看更多>>
资源描述

《第二章光学导论》由会员分享,可在线阅读,更多相关《第二章光学导论(63页珍藏版)》请在金锄头文库上搜索。

1、目 录,一、电磁辐射的描述 1. 光的波动性 2. 光的粒子性 二、电磁波谱 三、光谱仪器及其组成 1. 光源 2. 分光系统(棱镜和光栅、狭缝、光谱仪结构) 3. 吸收池 4. 光谱分析检测器,光学分析方法: 以物质的光学性质为基础建立的分析方法。 利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射强度等光学特性,进行物质的定性和定量分析的方法。 历史上,此相互作用只是局限于电磁辐射与物质的作用,这也是目前应用最为普遍的方法。现在,光谱方法已扩展到其它各种形式的能量与物质的相互作用,如声波、粒子束(离子和电子)等与物质的作用。,3) 光的干涉(Coherent interfere

2、nce) 4) 光的传输(Transmission) 5) 光的反射(Reflection) 6) 光的折射(Refraction) 7)光的偏振(Polarization) 8)光的散射(Scattering) 丁达尔散射(Tyndall): 大分子(如胶体粒子和聚合物分子)尺寸与光的波长相近时所产生的散射现象,此时散射光极强(与2成反比),可以肉眼观察到。 瑞利散射(Rayleigh):(弹性碰撞, 方向改变,但 不变) 当分子或分子集合体的尺寸远小于光的波长时所发生的散射现象。散射光强与光的波长的4、散射粒子的大小和极化率成反比。 天空为什么呈蓝色? 拉曼散射(Raman):(非弹性碰撞

3、,方向及波长均改变) 光照导致的分子内振动能级跃迁而产生的分子极化过程。分子极化率越大,Raman散射越强。,2. 光的粒子性 当物质发射电磁辐射或者电磁辐射被物质吸收时,就会发生能量跃迁。此时,电磁辐射不仅具有波的特征,而且具有粒子性,最著名的例子是光电效应现象的发现。 1)光电效应(Photoelectric effect) 现象:1887,Heinrich Hetz(在光照时,两间隙间更 易发生火花放电现象) 解释:1905,Einstein理论,E=h,2) 能态(Energy state) 量子理论(Max Planck,1900): 物质粒子总是处于特定的不连续的能量状态,即能量是

4、量子化的;处于不同能量状态粒子之间发生能量跃迁时的能量差 E 可用 h 表示。 两个重要推论: 物质粒子存在不连续的能态,各能态具有特定的能量。当粒子的状态发生变化时,该粒子将吸收或发射完全等于两个能级之间的能量差; 反之亦是成立的,即 E =E1-E0=h,波粒二象性,电磁波谱,原子光谱与分子光谱,原子光谱:线状 由原子产生的光谱: (1)外层电子跃迁 原子吸收、原子发射、原子荧光 (2)内层电子跃迁 荧光、Mssbauer谱,分子光谱:带状 由分子产生的光谱:吸收、荧光、磷光,跃迁类型与分子光谱,分子光谱复杂,电子跃迁时带有振动和转动能级跃迁; 分子的紫外-可见吸收光谱是由纯电子跃迁引起的

5、,故又称电子光谱,谱带比较宽; 分子的红外吸收光谱是由于分子中基团的振动和转动能级跃迁引起的,故也称振转光谱; 分子的荧光光谱是在紫外或可见光照射下,电子跃迁至单重激发态,并以无辐射弛豫方式回到第一单重激发态的最低振动能级,再跃回基态或基态中的其他振动能级所发出的光; 分子的磷光是指处于第一最低单重激发态的分子以无辐射弛豫方式回到第一最低三重激发态,再跃迁回到基态所发出的光;,吸收光谱和发射光谱,吸收光谱的产生 将频率为的电磁波通过一层固体、液体或气体物质,而电磁波的能量正好等于物质的某两个能态(如基态和某一激发态)之间的能量差时,如h=EA-E0,物质就会吸收辐射,此时电磁辐射能被转移到组成

6、物质的分子或原子上,物质从较低能态激发到较高能态或激发态。 可以通过实验得到吸光度对波长或频率的函数图,即吸收光谱。,发射光谱的产生,当受激粒子(分子、原子或离子)驰豫回到低能级或基态时,常常以光子形式释放多余的能量,产生电磁辐射。 激发的方法: 电子等基本粒子轰击 X射线 电火花、电弧、火焰、热炉 紫外、可见、红外 电磁辐射 荧光 化学反应 化学发光 习惯上用发射光谱表征由激发源发出的辐射,它通常是以发射辐射的相对强度作为波长或频率的函数。,光谱组成 线光谱(Line spectra): 由处于气相的单个原子发生电子能级跃迁所产生的锐线,线宽大约为10-4A。 带状光谱(Band spect

7、ra): 由气态自由基或小分子振动-转动能级跃迁所产生的光谱,由于各能级间的能量差较小,因而产生的谱线不易分辨开而形成所谓的带状光谱,其带宽达几个至几十个nm);,连续光谱(Continuum spectra): 固体被加热到炽热状态时,无数原子和分子的运动或振动所产生的热辐射,也称黑体辐射。通常产生背景干扰。温度越高,辐射越强,而且短波长的辐射强度增加得最快! 另一方面,炽热的固体所产生的连续辐射是红外、可见及较长波长的重要辐射源(光源)。,光分析法的概念及其分类,光分析法:检测能量作用于待测物质后产生的辐射讯号或引起的变化的分析方法。光分析法可分为非光谱法与光谱法两类,广义上,包括电子能谱

8、法。 非光谱法:不以光的波长为特征讯号,而是测量电磁辐射的一些基本性质的变化,如反射、折射、干涉、衍射和偏振等。折射法、干涉法、散射浊度、旋光法、X射线衍射法、电子衍射法等。 光谱法:基于光的吸收、发射、拉曼散射,检测光的波长和强度,1光谱法 三种基本类型: 吸收光谱 发射光谱 散射光谱:拉曼 2非光谱法 折射、旋光、圆二色性、比浊、衍射 3电子能谱法 紫外光电子能谱 X射线光电子能谱 俄歇电子能谱,光分析法的主要过程: 能源提供能量 能量与被测物质相互作用 产生被检测的信号 光分析法的分类方法: 根据能源的不同种类来分:红外、紫外、X光、化学发光 根据被作用的物质来分:原子光谱、分子光谱 根

9、据检测信号来分:吸收、发射、散射、折射、反射、干涉、衍射、偏振,连续光源:在较大范围提供连续波长的光源,氢灯、氘灯、钨丝灯等; 线光源:提供特定波长的光源,金属蒸气灯(汞灯、钠蒸气灯)、空心阴极灯、激光等;,2. 分光系统(monochromator, wavelength selector) 定义:将由不同波长的“复合光”分开为一系列“单一” 波长的“单色光”的器件。 理想的100%的单色光是不可能达到的,实 际上只能获得的是具有一定“纯度”的单色光,即 该“单色光具有一定的宽度(有效带宽)。有效 带宽越小,分析的灵敏度越高、选择性越好、 分析物浓度与光学响应信号的线性相关性也越 好。,棱镜

10、特性 色散率: 角色散率d/d,表示偏向角对波长的变化。在最小偏向角时(折射线平行于棱镜底边),可以导出: 可见角色散率与折射率 n 及棱镜顶角 有关。 因此,增加角色散率 d/d 的方式有三: 改变棱镜材料,玻璃比石英的折射率大,但玻璃只适于可见 光区; 增加棱镜顶角,多选 600; 增加棱镜数目,但由于设计及结构上的困难,最多用2个。,线色散率dl/d或倒线色散率d/dl:它表示两条谱线在焦面上被分开的距离对波长的变化率: 可见线色散率除与角色散率有关外,还与会聚透镜焦距 f 及焦面和光轴间夹角 有关。 因此,增加透镜焦距、减小焦面与光轴夹角棱镜色散能力提高。,分辨率R:指将两条靠得很近的

11、谱线分开的能力(Rayleigh准则),可表示为 其中,m-棱镜个数;b底边有效长度(cm) :两条相邻谱线的平均波长;:两条谱线的波长差b:棱镜的底边长度;n:棱镜介质材料的折射率。 可见,分辨率随波长变化而变化,在短波部分分辨率较大,即棱镜分光具有“非匀排性”,色谱的光谱为“非匀排光谱”。这是棱镜分光最大的不足。,2)光栅 制作:以特殊的工具(如钻石),在硬质、磨光的光 学平面上刻出大量紧密而平行的刻槽。以此为 母板,可用液态树脂在其上复制出光栅。制作 的光栅有平面透射光栅、平面反射光栅及凹面 反射光栅。刻制质量不高的光栅易产生散射线 及鬼线(Ghost lines)。 通常的刻线数为30

12、0-2000刻槽/mm。最常用的是1200-1400刻槽/mm(紫外可见)及100-200刻槽/mm(红外)。,光 栅,透射光栅,反射光栅; 光栅光谱的产生是多狭缝干涉与单狭缝衍射共同作用的结果,前者决定光谱出现的位置,后者决定谱线强度分布;,平面透射光栅:,d,P0,P1,P0(0级),P1,P1,P2,P2,距离,相对强度,入射光为单色光,那么 当入射线垂直于光栅时,=0,n= d sin 当入射线不垂直于光栅时,n= d(sin + sin) 在零级光谱有最大的光强!,入射光为复合光,那么 0 级光P0处是未经色散的白光; 其它波长的光因波长不同,产生的一级光谱位置 不同:波长小的则衍射

13、角小,谱线靠近0级;波 长大的,衍射角大,谱线距0级较远; 同样对于二级光谱而言,也有同样的情况。但可 能造成二级光谱与一级光谱的重叠,而且具有最 大强度的光处于0级(为未分开的白光)!,平面反射光栅(闪耀光栅,小阶梯光栅): 将平行的狭缝刻制成具有相同形状的刻槽(多为三角形),此时,入射线的小反射面与夹角 一定,此时反射线集中于一个方向,从而使光能集中于所需要的一级光谱上。此种光栅又称闪耀光栅。当= 时,在衍射角方向可获得最大的光强, 也称为闪耀角。 如下图所示。,凹面光栅(concave grating) 在半径为 r 的半球内侧刻划一系列平行刻槽而制成的光栅,多用于光电直读光谱仪。由于此

14、类光栅除具有分光作用外,也具有聚焦作用,因此分光系统中不需要会聚透镜等光学部件:光能损失小,节省费用。 凹面光栅线色散率可用下式表示:,小阶梯光栅与中阶梯光栅的性能比较,狭缝宽度的选择原则 定性分析:选择较窄的狭缝宽度提高分辨率, 减少其它谱线的干扰,提高选择性; 定量分析:选择较宽的狭缝宽度增加照亮狭缝 的亮度,提高分析的灵敏度; 应根据样品性质和分析要求确定狭缝宽度。并通 过条件优化确定最佳狭缝宽度。 与发射光谱分析相比,原子吸收光谱因谱线数少, 可采用较宽的狭缝。但当背景大时,可适当减小 缝宽。,集光本领(Light-gathering power of monochromator) 为

15、提高光谱仪的信噪比,必须使得达检测器的光能量足够强。常以集光本领来反映: 其中,F 为准直镜的焦距;d 为其直径。 可见,集光本领与 f 数平方成反比,但与狭缝宽度无关。较短焦距、较长直径的准直镜使色散率降低,但可获得更大的集光本领。,3. 吸收池(Sample container,Cell,Cuvette) 除发射光谱外,其它所有光谱分析都需要吸收池。盛放试样的吸收池由光透明材料制成。 石英或熔融石英:紫外光区可见光区3m; 玻璃:可见光区(350-2000nm); 透明塑料:可见光区(350-2000nm); 盐窗(NaCl, NaBr晶体):红外光区。,4. 光电转换器(Transduc

16、er) A)定义:光电转换器是将光辐射转化为可以测量的电信号的器件。 S = kP + kd = kP K:校正灵敏度;P:辐射功率;kd: 暗电流(可通过线路补偿,使为0) B)理想的光电转换器要求: 灵敏度高; S/N大; 暗电流小; 响应快且在宽的波段内响应恒定。,硅二极管,反向偏值耗尽层(depletion layer)pn结电导趋于0 (i=0); 光照耗尽层中形成空穴和电子空穴移向p区并湮灭外 加电压对pn“电容器”充电产生充电电流信号 (i0) 。 特点:灵敏度介于真空管和倍增管之间。,热检测器 包括:热电偶,热辐射计及热释电检测器。 这类检测器主要用于红外及Raman光谱分析中。,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号