第二章材料的基本性质.

上传人:今*** 文档编号:107175963 上传时间:2019-10-18 格式:PPT 页数:33 大小:1.20MB
返回 下载 相关 举报
第二章材料的基本性质._第1页
第1页 / 共33页
第二章材料的基本性质._第2页
第2页 / 共33页
第二章材料的基本性质._第3页
第3页 / 共33页
第二章材料的基本性质._第4页
第4页 / 共33页
第二章材料的基本性质._第5页
第5页 / 共33页
点击查看更多>>
资源描述

《第二章材料的基本性质.》由会员分享,可在线阅读,更多相关《第二章材料的基本性质.(33页珍藏版)》请在金锄头文库上搜索。

1、第二章 材料的基本性质,一、材料与质量有关的性质,材料的体积构成 体积是材料占有的空间尺寸。由于材料具有不同的物理状态,因而表现出不同的体积。,(一)材料的密度,1.实际密度 指材料在绝对密实状态下单位体积的质量,按下式计算:,式中:实际密度,g/cm3 或 kg/m3; m材料的质量,g 或 kg; V材料的绝对密实体积,cm3 或 m3。,2.表观密度 材料单位表观体积的质量。按下式计算: 式中: 0体积密度, g/cm3 或 kg/m3; m 材料的质量,g 或 kg; 0 材料的自然体积,cm3 或 m3。,3. 堆积密度 堆积密度是指粉状或粒状材料,在堆积状态下单位体积的质量。按下式

2、计算: 式中:0材料的堆积密度, g/cm3 或 kg/m3; m 材料的质量,g 或 kg; V 0 材料的堆积体积,cm3 或 m3。,砂堆积体积的测定,将容量筒内材料刮平,容量筒的容积即为材料堆积体积,(二) 材料的密实度,密实度是指材料体积内固体物质填充的程度。密实度的计算式如下: 式中: 密度; 0材料的表观密度。 对于绝对密实材料, 因 0 = ,故密实度D =1 或100%。对于大多数土木工程材料, 因 0 ,故密实度D 1 或 D 100%。,材料的孔隙率是指材料内部孔隙的体积占材料总体积的百分率。孔隙率P按下式计算: 式中:V 材料的绝对密实体积,cm3 或 m3; V0 材

3、料的表观体积,cm3 或 m3; 0 材料的表观密度, g/cm3 或 kg/m3; 密度, g/cm3 或 kg/m3。,(三)孔隙率,(四)空隙率,空隙率是指散粒材料在其堆积体积中, 颗粒之间的空隙体积所占的比例。空隙率 P按下式计算: 式中:0 材料的体积密度; 0 材料的堆积密度。 空隙率的大小反映了散粒材料的颗粒互相填充的致密程度。空隙率可作为控制混凝土骨料级配与计算砂率的依据。,孔隙率与空隙率的区别,1. 材料的强度 材料的强度是材料在应力作用下抵抗破坏的能力。 根据外力作用方式的不同,材料强度有、抗压、 抗剪、抗弯(抗折)强度等。,抗压,抗拉,抗剪,抗弯,二、材料的力学性质,抗压

4、强度、抗拉强度、抗剪强度的计算: 式中:f材料强度, MPa; Fmax材料破坏时的最大荷载,N; A试件受力面积,mm2。,抗弯强度的计算: 中间作用一集中荷载,对矩 形截面试件,则其抗弯强度 用下式计算: 式中:fw材料的抗弯强 度, MPa; Fmax材料受弯破坏时的最大荷载,N; A试件受力面积,mm2; L 、b 、 h 两支点的间距,试件横截面的宽及高, mm。,-,2. 弹性和塑性 (1)弹性 材料在外力作用下产生变形,当外力取消后能够完全恢复原来形状的性质称为弹性。这种完全恢复的变形称为弹性变形(或瞬时变形)。 (2)塑性 材料在外力作用下产生变形,如果外力取消后,仍能保持变形

5、后的形状和尺寸,并且不产生裂缝的性质称为塑性。这种不能恢复的变形称为塑性变形(或永久变形)。,3. 脆性和韧性 材料受力达到一定程度时,突然发生破坏,并无明显的变形,材料的这种性质称为脆性。大部分无机非金属材料均属脆性材料,如天然石材,烧结普通砖、陶瓷、玻璃、普通混凝土、砂浆等。脆性材料的另一特点是抗压强度高而抗拉、抗折强度低。在工程中使用时,应注意发挥这类材料的特性。 材料在冲击、震动荷载作用下,能发生较大变形而不发生突然破坏的性质称为韧性。 木材、建筑钢材、沥青、橡胶等均属于韧性材料。,4. 硬度和耐磨性 (1)硬度 材料的硬度是材料表面的坚硬程度,是抵抗其它硬物刻划、压入其表面的能力。通

6、常用刻划法,回弹法和压入法测定材料的硬度。 刻划法用于天然矿物硬度的划分,按滑石、石膏、方解石、萤石、磷灰石、长石、石英、黄晶、刚玉、金刚石的顺序,分为10个硬度等级。 回弹法用于测定混凝土表面硬度,并间接推算混凝土的强度;也用于测定陶瓷、砖。砂浆、塑料、橡胶、金属等的表面硬度并间接推算其强度。,(2) 耐磨性 耐磨性是材料表面抵抗磨损的能力。材料的 耐磨性用磨耗率表示,计算公式如下: 式中: G 材料的磨耗率, (g/cm2); m1材料磨损前的质量,(g); m2 材料磨损后的质量,(g); A 材料试件的受磨面积 (cm2)。 建筑中,地面、楼梯踏步、人行道路等处需考 虑材料的硬度和耐磨

7、性。,材料的耐久性是泛指材料在使用条件下,受各种内在或外来自然因素及有害介质的作用,能长久地保持其使用性能的性质。 材料在建筑物之中,除要受到各种外力的作用之外,还经常要受到环境中许多自然因素的破坏作用。这些破坏作用包括物理、化学、机械及生物的作用。,物理作用可有干湿变化、温度变化及冻融变化等。 化学作用包括大气、环境水以及使用条件下酸、碱、盐等液体或有害气体对材料的侵蚀作用。 机械作用包括使用荷载的持续作用,交变荷载引起材料疲劳,冲击、磨损、磨耗等。 生物作用包括菌类、昆虫等的作用而使材料腐朽、蛀蚀而破坏。,1.材料的亲水性与憎水性 与水接触时,材料表面能被水润湿的性质称为亲水性;材料表面不

8、能被水润湿的性质称为憎水性。 具有亲水性或憎水性的根本原因在于材料的分子结构。亲水性材料与水分子之间的分子作用力,大于水分子相互之间的内聚力;憎水性材料与水分子之间的作用力,小于水分子相互之间的内聚力。,()亲水性材料 ()憎水性材料,三、材料与水有关的性质,2. 材料的吸水性 材料在水中吸收水分的能力,称为材料的吸水性。 吸水性的大小以吸水率来表示。 式中: W 材料的重量吸水率(%); m1材料吸水饱和状态下的质量(g或kg); m 材料在干燥状态下的质量(g或kg)。,影响材料吸水性的因素: 材料的吸水率与其孔隙率有关,更与其空隙特征有关。因为水分是通过材料的开口孔吸入并经过连通孔渗入内

9、部的。材料内与外界连通的细微孔隙愈多,其吸水率就愈大。,3. 材料的吸湿性 材料在空气中吸收水分,所吸收水分随空气中湿度的大小而变化。 当空气中湿度在较长时间内稳定时,材料的吸湿和干燥过程处于平衡状态,此时材料的含水率保持不变,其含水率称为平衡含水率。,吸水率与含水率的区别,4. 材料的耐水性 材料的耐水性是指材料长期在饱和水的作用下不破坏, 强度也不显著降低的性质。材料耐水性的指标用软化系数 KR表示: 式中:KR 材料的软化系数; fb 材料吸水饱和状态下的抗压强度(MPa); fg 材料在干燥状态下的抗压强度(MPa)。,软化系数反映了材料饱水后强度降低的程度,是材料吸水后性质变化的重要

10、特征之一。 一般材料吸水后,水分会分散在材料内微粒的表面,削弱其内部结合力,强度则有不同程度的降低。当材料内含有可溶性物质时(如石膏、石灰等),吸入的水还可能溶解部分物质,造成强度的严重降低。 软化系数的波动范围在0至1之间。工程中通常将KR0.85的材料称为耐水性材料,可以用于水中或潮湿环境中的重要工程。用于一般受潮较轻或次要的工程部位时,材料软化系数也不得小于0.75 。,5.抗冻性 抗冻性是指材料在吸水饱和状态下,能经受反复冻融循环作用而不破坏,强度也不显著降低的性能。 材料吸水后,在负温作用条件下,水在材料毛细孔内冻结成冰,体积膨胀所产生的冻胀压力造成材料的内应力,会使材料遭到局部破坏

11、。随着冻融循环的反复,材料的破坏作用逐步加剧,这种破坏称为冻融破坏。 抗冻性以试件在冻融后的质量损失和强度损失不超过一定限度时所能经受的冻融循环次数来表示,或称为抗冻等级。 材料的抗冻等级可分为F15、F25、F50、F100、F200等,分别表示此材料可承受15次、25次、50次、100次、200次的冻融循环。,影响抗冻性的因素: 1.材料的密实度(孔隙率):密实度越高则其抗冻性越好。 2.材料的孔隙特征:开口孔隙越多则其抗冻性越差。 3.材料的强度:强度越高则其抗冻性越好。 4.材料的耐水性:耐水性越好则其抗冻性也越好。 5.材料的吸水量大小:吸水量越大则其抗冻性越差。,6. 材料的抗渗性

12、 抗渗性是材料在压力水作用下抵抗水渗透的性能。 用渗透系数或抗渗等级表示。 (1)渗透系数 材料的渗透系数K可通过下式计算: 式中:K渗透系数,(cm / h) Q渗水量(cm3); F渗水面积(cm2) H材料两侧的水压差,(cm); d试件厚度 (cm);t渗水时间 (h)。 材料的渗透系数越小,说明材料的抗渗性越强。,(2)抗渗等级 材料的抗渗等级是指用标准方法进行透水测试时,材料标准试件在透水前所能承受的最大水压力,并以字母P及可承受的水压力(以0.1MPa为单位)来表示抗渗等级。如P4、P6、P8、P10等,表示试件能承受逐步增高至0.4MPa、0.6MPa、0.8MPa、1.0MP

13、a的水压而不渗透。 (3)影响材料抗渗性的因素 材料亲水性和憎水性:通常憎水性材料其抗渗性优于亲水性材料; 材料的密实度:密实度高的材料其抗渗性也较高; 材料的孔隙特征:具有开口孔隙的材料其抗渗性较差。,1.导热性 当材料两面存在温度差时,热量提高建筑材料传递的性质,称为材料的导热性。导热性用导热系数表示: 式中: 导热系数,W/(mK); Q 传导的热量,J; d 材料厚度,m; F 热传导面积,m2; Z 热传导时间,h; (t2t1)材料两面温度差,K。 物理意义:单位厚度(1m)的材料、两面温度差为1K时、在单位时间(1s)内通过单位面积(1 m2 )的热量。,四、材料的热工性质,2.

14、 热容量和比热 材料在受热时吸收热量,冷却时放出热量的性质称为材料的热容量。用热容量系数或比热表示。比热的计算式如下所示: 式中:C 材料的比热,J/(gK); Q 材料吸收或放出的热量(热容量); m 材料质量,g; (t2 t1)材料受热或冷却前后的温差,K。,3. 热阻和传热系数 热阻是材料层(墙体或其它围护结构)抵抗热流通过的能力,热阻的定义及计算式为: / 式中: R材料层热阻,(m2K)/W; d材料层厚度,m; 材料的导热系数,W/(mK)。 热阻的倒数称为材料层(墙体或其它围护结构)的传热系数。传热系数是指材料两面温度差为1时,在单位时间内通过单位面积的热量。,4. 材料的温度变形性 材料的温度变形是指温度升高或降低时材料的体积变化。用线膨胀系数表示。 L =(t2 t1) L 式中:L 线膨胀或线收缩量 ,mm 或 cm; (t2t1)材料前后的温度差,K; 材料在常温下的平均线膨胀系数,1/K; L 材料原来的长度,mm或m。 材料的线膨胀系数与材料的组成和结构有关,常选择合适的材料来满足工程对温度变形的要求。,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号