拉氏变换及其计算机公式

上传人:油条 文档编号:10700499 上传时间:2017-10-10 格式:DOCX 页数:21 大小:441.19KB
返回 下载 相关 举报
拉氏变换及其计算机公式_第1页
第1页 / 共21页
拉氏变换及其计算机公式_第2页
第2页 / 共21页
拉氏变换及其计算机公式_第3页
第3页 / 共21页
拉氏变换及其计算机公式_第4页
第4页 / 共21页
拉氏变换及其计算机公式_第5页
第5页 / 共21页
点击查看更多>>
资源描述

《拉氏变换及其计算机公式》由会员分享,可在线阅读,更多相关《拉氏变换及其计算机公式(21页珍藏版)》请在金锄头文库上搜索。

1、时域的函数可以通过线性变换的方法在变换域中表示,变换域的表示有时更为简捷、方便。例如控制理论中常用的拉普拉斯变换,简称拉氏变换,就是其中的一种。一、拉氏变换的定义已知时域函数 ,如果满足相应的收敛条件,可以定义其拉氏变换为 (2-45)式中, 称为原函数, 称为象函数,变量 为复变量,表示为(2-46)因为 是复自变量 的函数,所以 是复变函数。有时,拉氏变换还经常写为 (2-47)拉氏变换有其逆运算,称为拉氏反变换,表示为 (2-48)上式为复变函数积分,积分围线 为由 到 的闭曲线。二、常用信号的拉氏变换 系统分析中常用的时域信号有脉冲信号、阶跃信号、正弦信号等。现复习一些基本时域信号拉氏

2、变换的求取。(1)单位脉冲信号 理想单位脉冲信号的数学表达式为 (2-49)且 (2-50)所以 (2-51)说明: 单位脉冲函数可以通过极限方法得到。设单个方波脉冲如图 2-13 所示,脉冲的宽度为 ,脉冲的高度为 ,面积为 1。当保持面积不变,方波脉冲的宽度 趋于无穷小时,高度 趋于无穷大,单个方波脉冲演变成理想的单位脉冲函数。在坐标图上经常将单位脉冲函数表示成单位高度的带有箭头的线段。由单位脉冲函数 的定义可知,其面积积分的上下限是从 到 的。因此在求它的拉氏变换时,拉氏变换的积分下限也必须是 。由此,特别指明拉氏变换定义式中的积分下限是 ,是有实际意义的。所以,关于拉氏变换的积分下限根

3、据应用的实际情况有 , , 三种情况。为不丢掉信号中位于 处可能存在的脉冲函数,积分下限应该为 。 (2)单位阶跃信号 单位阶跃信号的数学表示为 (2-52) 又经常写为 (2-53)由拉氏变换的定义式,求得拉氏变换为 (2-54)因为 阶跃信号的导数在 处有脉冲函数存在,所以单位阶跃信号的拉氏变换,其积分下限规定为 。(3)单位斜坡信号单位斜坡信号的数学表示为 (2-55) 图 2-15 单位斜坡信号 另外,为了表示信号的起始时刻,有时也经常写为 (2-56)为了得到单位斜坡信号的拉氏变换,利用分部积分公式 得 (2-57)(4)指数信号指数信号的数学表示为 (2-58)拉氏变换为 (2-5

4、9) (5)正弦、余弦信号 正弦、余弦信号的拉氏变换可以利用指数信号的拉氏变换求得。由指数函数的拉氏变换,可以直接写出复指数函数的拉氏变换为 (2-60)因为 (2-61)由欧拉公式 (2-62)有 (2-63)分别取复指数函数的实部变换与虚部变换,则有:正弦信号的拉氏变换为 (2-64)同时,余弦信号的拉氏变换为(2-65)常见时间信号的拉氏变换可以参见表 2-1。表 2-1 常见函数的拉普拉斯变换表 三、拉氏变换的一些基本定理(1)线性定理 若函数 的拉氏变换分别为 ,则 (2-66)(2)延迟定理 若函数 的拉氏变换为 ,则 (2-67)信号 与它在时间轴上的平移信号 的关系见图 2-1

5、8 所示。该定理说明了时间域的平移变换在复数域有相对应的衰减变换。 应用延迟定理,可以简化一些信号的拉氏变换的求取。 例 2-9 周期锯齿波信号如图 2-18 所示,试求该信号的拉氏变换。 解:该信号为周期信号。因此,已知信号第一周期的拉氏变换为 时,应用拉氏变换的延迟定理,得到周期信号的拉氏变换为 锯齿波信号第一周期的拉氏变换为 所以,锯齿波信号的拉氏变换为 (3)衰减定理 若函数 的拉氏变换为 ,则 (2-68)该定理说明了时间信号 在时间域的指数衰减,其拉氏变换在变换域就成为坐标平移。当时间函数带有指数项因子时,利用拉氏变换的衰减定理,可以简化其拉氏变换的求取计算。 例 2-10 试求时

6、间函数 的拉氏变换。 解: 因为正弦函数的拉氏变换为 所以,应用拉氏变换的衰减定理可以直接写出 另外,衰减定理与延迟定理也表明了时间域与变换域的对偶关系。(4)微分定理 若函数 的拉氏变换为 ,且 的各阶导数存在,则 各阶导数的拉氏变换为 (2-69)(2-70)(2-71)当所有的初值(各阶导数的初值)均为零时,即 则 (2-72)(2-73) (2-74)证明:(在此只证明一阶导数的拉氏变换,其余请读者自证)由拉氏变换的定义式 利用分部积分公式 令 则 所以 证毕。(5)积分定理 若函数 的拉氏变换为 ,则 (2-75)定理的证明同样采用分部积分公式可以证得,请读者自证。式中 为函数 的在

7、 时刻的积分值。积分定理与微分定理互为逆定理。(6)初值定理 若函数 的拉氏变换为 ,且在 处有初值 ,则 (2-76)即时域函数的初值,可以由变换域求得。证明 由微分定理令 即可证得。 注意,拉氏变换的初值定理是满足拉氏变换的定义的,因此由初值定理所求得的时间信号的初值为 ,而不是或者 。例如阶跃信号 ,可以利用拉氏变换的初值定理求得其初值为 (7)终值定理 若函数 的拉氏变换为 ,且 存在,则 (2-77)即时域函数的终值,也可以由变换域求得。证明:由微分定理 两边对 取极限 因为 ,所以方程左边方程右边 所以 证毕。 (8)卷积定理若时域函数 分别有拉氏变换 ,时域函数的卷积分为 (2-

8、78)又常表示为 (2-79)则其拉氏变换为 (2-80)这表明时域函数卷积分在变换域成为变换域函数的乘积。证明可参考其他教材。时域函数在变换域中表示有两个优点。一个优点是简化了函数,例如指数函数和正、余弦函数都是时域中的超越函数,在变换域中成为有理函数表示;另一个优点是简化了运算,如时域函数的卷积分在变换域中成为变换域函数的乘积。 常用的拉氏变换基本定理可以参见表 2-2。表 2-2 拉普拉斯变换的基本性质表 四、拉普拉斯反变换 拉普拉斯变换将时域函数 变换为复变函数 ,相应地它的逆运算可以将复变函 数 变换回原时域函数。拉氏变换的逆运算称为拉普拉斯反变换,简称拉氏反变换。由复变函数积分理论

9、,拉氏反变换的计算公式为 (2-81)上式的拉氏反变换,由于是复变函数的积分,计算复杂,一般很少采用。所以已知 反求 时,通常采用的方法是部分分式法。 由于工程中常见的时间信号 ,它的拉氏变换都是 s 的有理分式。因此,可以将 分解为一系列的有理分式之和,再利用拉氏变换表确定出所有的有理分式项 所对应的时域函数 ,合成时域函数 。上述过程遵循的是拉氏变换的线性定理。 拉氏变换 通常为 s 的有理分式,可以表为 (2-82) 式中, 是分子多项式, 是分母多项式,系数 和 均为实数, ,为正整数,而且 。 在复变函数理论中,分母多项式所对应的方程 ,其所有的解 称为 的极点。这样可以表示为 (2

10、-83)由复变函数的留数定理,可以确定 的各分式 ,求得拉氏反变换为 (2-84)下面分别讨论各种计算情况。 1 全部为单根 可以分解为 (2-85)其中 (2-86)为复变函数 对于极点 的留数。则拉氏反变换为(2-87)例 2-11 已知: ,求拉氏反变换 。 解:将 分解为部分分式 极点为: ,则对应极点的留数为 则分解式为 查拉氏变换表可得 2 有重根 只考虑一个单根情况,设 为单根, 为 重根, ,则 可以展开为 (2-88)式中,与单根 相对应的系数 的求法与前述相同。与重根 相对应的各系数 , ,由留数定理可得计算公式如下: (2-89) (2-90)因为 所以,拉氏反变换为 (

11、2-91)例 2-12 求 的拉氏反变换 。 解: 可以分解为 系数 C1,C2,分别对应单根 , ,由前述单根情况计算为 系数 分别对应二重根 s3=-1 于是, 的分解式为 查表求得拉氏反变换为 3A(s)=0 有共轭复数根 时域函数有共轭复数根时,可以将其作为单根(互不相同)来看待。但是在分解时,涉及到复数运算,计算繁琐。拉氏变换中有如下的变换对: 上述变换对的分母都是共轭复数形式的二次三项式,相对应的反变换均为正余弦型。所以,除了可以按照单根情况计算外,还可以按照下述例题的计算步骤进行计算。 例 2-13 已知 ,试求其拉氏反变换 。解:因为分子多项式的次数与分母多项式的次数相等,必然

12、存在常数项,而常数项的拉氏反变换为脉冲函数,所以有: 第一步,将分子多项式除以分母多项式,分离常数项为 第二步,将余式的二次三项式按照上述拉氏变换表整理为 第三步,写出拉氏反变换。 因为 所以五、拉氏变换法求解微分方程 列出控制系统的微分方程之后,就可以求解该微分方程,利用微分方程的解来分析系统的运动规律。微分方程的求解方法,可以采用数学分析的方法来求解,也可以采用拉氏变换法来求解。采用拉氏变换法求解微分方程是带初值进行运算的,许多情况下应用更为方便。拉氏变换法求解微分方程步骤如下: (1)方程两边作拉氏变换。 (2)将给定的初始条件与输入信号代入方程。 (3)写出输出量的拉氏变换。 (4)作

13、拉氏反变换求出系统输出的时间解。 例 2-14 滤波电路如图 2-19 所示,输入电压信号 ,电容的初始电压 分别为 0V 和 1V 时,分别求时域解 。解:RC 电路的微分方程为 方程两边作拉氏变换 由拉氏变换的线性定理得 由拉氏变换的微分定理得 将系统参数值带入整理得 输出的拉氏变换为 (1) 时,(2) 时, 拉氏变换及反变换公式1. 拉氏变换的基本性质齐次性 )(saFtfL1 线性定理叠加性 )(2121s一般形式 1)1( )1(22)(0)(kk knnndtff fsFtLfdtff)(2 微分定理初始条件为 0 时 )()(sFtfLnn一般形式 nktnnnn ttt df

14、sFdtfLsffstfdd1002202 )()()( )()()( 个共个共 3 积分定理初始条件为 0 时 n个共 4 延迟定理(或称 域平移定理)t )()(1seTtf5 衰减定理(或称 域平移定理)s)aFeLat6 终值定理 )(lim(li0stfst7 初值定理 )0st8 卷积定理 )()()( 21021021 sFdtfLdftLt 2 常用函数的拉氏变换和 z 变换表序号 拉氏变换 E(s) 时间函数 e(t) Z 变换 E(z)1 1 (t) 12 Tse0)()nTttz3 114 21st 2)(zT5 32 316 1ns!nt )(!)(lim0aTnaez

15、7 aate 8 2)(sat 2)(aTez9 aate11a10 )(bsbtt bTTezz11 2tsin1cos2in12 sco)(Tz13 2)(ateatsin aaee22cosin14 2statcoaTaTz2215 aTln)/1(Tt/ 3 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设 是 的有理真分式)(sF ( )011)( assabbsABFnnmm mn式中系数 , 都是实常数; 是正整数。按代数定理可naa,.10,10 ,将 展开为部分分式。分以下两种情况讨论。)(s 无重根这时,F(s)可展开为 n 个简单的部分分式之和的形式。niii scsscscsF 121)( 式中, 是特征方程 A(s)0 的根。 为待定常数,称为 F(s)在 处的留数,可n,21 i i按下式计算:)(limsFcis或isiAB)(式中, 为 对 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数)(sA niiscLFtf 11)( tsniie1 有重根0)(s设 有 r 重根 ,F(s)可写

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 电子/通信 > 综合/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号