江西省2020届中考数学单元专题练之几何探究题【题型解读】几何探究题为江西近10年的必考题型,题位在解答题最后两道题中的一道.考查类型有:(1)操作探究问题(3次);(2)旋转探究问题(3次);(3)新定义探究问题(2次);(4)动点探究问题(2次);主要设问有:(1)求线段长;(2)判断图形的形状;(3)求角度;(4)判断两条线段的数量和位置关系并证明.类型一 操作探究问题1.如图,在正方形ABCD中,点E、F是正方形内两点,BE∥DF,EF⊥BE.为探索研究这个图形的特殊性质,某数学学习小组经历了如下过程:●初步体验如图①,连接BD,若BE=DF,求证:EF与BD互相平分.●规律探究(1)在图①中,(BE+DF)2+EF2=________AB2;(2)如图②,若BE≠DF,其他条件不变,(1)中的数量关系是否会发生变化?如果不会,请证明你的结论;如果会发生变化,请说明理由.●拓展应用如图③,若AB=4,∠DPB=135°,BP+2PD=4,求PD的长.第1题图2. 如图①,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为 ,P是半径OB上的一动点,Q是上的一动点,连接PQ.发现:当∠POQ=________时,PQ有最大值,最大值为________;思考:(1)如图②,若P是OB中点,且QP⊥OB于点P,求的长;(2)如图③,将扇形AOB沿折痕AP折叠,使点B的对应点恰好落在OA的延长线上,求阴影部分的面积;探究:如图④,将扇形OAB沿PQ折叠,使折叠后的恰好与半径OA相切,切点为C,若OP=6,求点O到折痕PQ的距离.第2题图3. 综合与实践问题情境:数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图①所示的长方形纸条ABCD,其中AD=BC=1,AB=CD=5.然后在纸条上任意画一条截线段MN,将纸片沿MN折叠,MB与DN交于点K,得到△MNK,如图②所示:深入探究:(1)若∠1=70°,求∠MKN的度数;(2)试判断△MNK的形状;若改变折痕MN的位置,△MNK的形状是否发生变化,请说明理由;拓展应用:(3)爱动脑筋的小明在研究△MNK的面积时,发现KN边上的高始终是个不变的值.根据这一发现,他很快研究出△KMN的面积最小值为,求此时∠1的度数;(4)小明继续动手操作,发现了△MNK面积的最大值.请你求出这个最大值.第3题图4. 如图,在矩形ABCD中,将矩形折叠,使点B落在边AD(含端点)上,落点记为点E,这时折痕与边BC或者边CD(含端点)交于点F,然后展开铺平,连接BE、EF.(1)操作发现:①在矩形ABCD中,任意折叠所得的△BEF是一个______三角形;②当折痕经过点A时,cos∠BEF的值为________;(2)深入探究:在矩形ABCD中,AB=,BC=2,①当△BEF是等边三角形时,求出BE的长度;②在任意折叠中,△BEF的面积是否存在最大值,若存在,求出EF的长;若不存在,请说明理由.第4题图 5. 如图①,已知△ABC中,∠BAC=90°,AB=AC,在∠BAC内部作∠MAN=45°,AM、AN分别交BC于点M、N.【操作】(1)将△ABM绕点A逆时针旋转90°,使AB边与AC边重合,把旋转后点M的对应点记作点Q,得到△ACQ,请在图①中画出△ACQ;(不写画法)【探究】(2)在(1)中所作图的基础上,连接NQ,①求证:MN=NQ;②写出线段BM,MN和NC之间满足的数量关系,并简要说明理由;【拓展】如图②,在等腰△DEF中,∠EDF=45°,DE=DF,点P是EF边上任意一点(不与点E,F重合),连接DP,以DP为腰向两侧分别作顶角均为45°的等腰△DPG和等腰△DPH,分别交DE、DF于点K、L,连接GH,分别交DE、DF于点S、T,(3)线段GS,ST和TH之间满足的数量关系是________;(4)设DK=a,DE=b,求DP的值.(用a、b表示)第5题图6.现有三角形纸板ABC, AC=BC=6,∠ACB=90°,将该三角形纸板放在足够大的圆中移动,⊙O交直线AB于点D,连接DO并延长交⊙O于点E,连接AE.(1)操作发现:如图①,当⊙O经过A、C两点,且圆心O在△ABC内部时,连接CD、CE,①试判断CD与CE的数量关系,并说明理由;②求AE+AD的值;(2)数学思考:如图②,当⊙O经过A、C两点,且圆心O在△ABC外部时,连接CD、CE,求AE-AD的值;(3)问题解决:如图③,点F为CA延长线上一点,且AC=3AF.当⊙O经过A,F两点,且圆心O在△ABC外部时,连接DF,EF,①猜想AE、AD之间的数量关系,并证明;②连接CE,是否存在△AEC为直角三角形?若存在,请直接写出⊙O的半径;若不存在,请说明理由.第6题图类型二 旋转探究问题1. 在△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C.(1)设△ACA′和△BCB′的面积分别为S1和S2.若θ=40°,请求出的值;(2)如图①,设A′B′与CB相交于点D,且AB∥CB′:①求证:CD=B′D;②求BD的长;(3)如图②,设AC中点为点M,A′B′中点为点N,连接MN,MN是否存在最大值,若存在,求出MN的值,判断出此时AA′与BB′的位置关系;若不存在,请说明理由.第1题图2. 如图①,在△ABC中,AC=BC=2,∠ACB=90°,点D、E分别是AC、BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,旋转角为α,连接AD′、BE′.(1)如图①,若 0°<α<90°.①求证: AD′=BE′;②当AD′∥CE′时,求BE′的长;(2)如图②,若 90°<α<180°,当点D′落段BE′上时,求sin∠CBE′的值;(3)如图③,将△CDE绕点C旋转一周,在旋转过程中,若AD′与直线BE′相交于点P,M为AB的中点,那么在整个旋转过程中,求PM扫过的图形面积. 第2题图3. 如图①,边长为6的等边△ABC中,点D在AB边上(不与点A,B重合),点E在BC边上(不与点B,C重合).第一次操作:将线段DE绕点E顺时针旋转,当点D落在三角形上时,记为点F;第二次操作:将线段EF绕点F顺时针旋转,当点E落在三角形上时,记为点G;依次操作下去….(1)如图②中的四边形DEFG是经过三次操作后得到的,且DE⊥EC.①四边形DEFG的形状为________;②若BE=CF,求线段DE的长;(2)若经过两次操作可得到△DEF如图③.①请判断△DEF的形状为________,此时AD与BE的数量关系是________;②以①中的结论为前提,设AD的长为x,△DEF的面积为y,求y与x的函数关系式;(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.第3题图 4. 已知△ABC与△DEF均为透明的完全一样的等腰直角三角板,且AC=BC=2,∠C=∠E=90°.在数学活动课上,小颖同学用这两块三角板进行探究活动.操作:使点D落段AB的中点处并使DF过点B(如图①),然后将△DEF绕点D顺时针旋转,直至点E落在CB的延长线上时结束操作,在此过程中,射线ED与射线CA交于点N,射线CB与DF相交于点M,连接MN(如图②,图③).(1)如图②,若AB∥MN,求证:△ADN≌△BDM;(2)如图②,在以上操作过程中,求证:AN·BM的值不会发生变化;(3)①如图③,在以上操作过程中,ND始终平分∠ANM吗?若平分,请加以证明;若不平分,请说明理由;②设AN=m,请直接写出△DMN的面积(用含m的式子表示).第4题图5. 如图①,把边长为2的正方形纸片ABCD沿对角线BD剪开,将△BCD平移得到△DEF,使得BC边与AD边重合,如图②所示,固定△ABC,将△EFD绕点A顺时针旋转,当ED边与AB边重合时,旋转停止.不考虑旋转开始和结束时重合的情况,设ED、EF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图③所示.(1)图②四边形ABCF的形状是________,连接BF,则BF=________;(2)在旋转过程中,∠CEF+∠CHE的度数为________;(3)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图③所示的情况说明理由);(4)当x为何值时,△AGH是等腰三角形?(直接写出答案,不必说明理由)第5题图6.将两张完全相同的平行四边行纸片按如图①所示放置(其中点E在BC上,点A在BG上,AB=BE=4,BC=BG=2+2,∠B=60°,▱ABCD固定不动,将▱GBEF绕点B顺时针旋转,旋转角为α(0°<α<360°).(1)如图①,连接AF,求AF的长.(2)如图②,当▱GBEF绕点B旋转到点F与点D重合时,AD与BG相交于点M,BC与ED相交于点N,求证:四边形BMDN是菱形.(3)如图③,在旋转过程中,当旋转角α为多少度时,以点C,G,D,F为顶点的四边形是正方形?是矩形?请给予证明.第6题图类型三 新定义探究问题1. 如图①,P为△ABC内一点,连接PA、PB、PC,若△PBC与△CAB相似,那么就称点P为△ABC的黄金点.(1)在下列三角形中,一定没有黄金点的是( )A. 锐角三角形 B. 钝角三角形 C. 等腰三角形 D. 直角三角形(2)如图②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为点E,试说明点E是△ABC的黄金点;(3)如图③,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=4.①若点P1是△ABC的黄金点,求AP1的长;②若点P1是△ABC的黄金点,点P2是△P1BC的黄金点, 点P3是△P1P2C的黄金点,点P4是△P1P2 P3的黄金点,…,以此类推,请求出△P2016P2017P2018的周长. 第1题图2. 我们知道若线段上的一个点把这条线段分割为两部分,其中一部分与全长之比等于时,则这个点称为黄金分割点.类比三角形中线的定义,我们规定:连接一个顶点和它对边的黄金分割点的线段叫做这个三角形的黄金线.(1)如图①,已知CD是△ABC的黄金线(AD>BD),△ABC的面积为4,则△BCD的面积为________; (2)如图②,在△ABC中,∠A=36°,AB=AC=1,过B点作BD平分∠ABC,与AC相交于点D,求证:BD是△ABC的黄金线; (3)如图③, BE、CD是△ABC的黄金线(AD>BD,AE>CE),BE、CD相交于点O.①设△BOD与△COE的面积分别为S1、S2,试猜想S1、S2的数量关系,并说明理由;②求的值.第2题图3.如果在两个相似但不全等的三角形中,其中一个三角形的一边等于另一个三角形的一边,那么,我们称这。