《广东省深圳市南山区2021-2022学年八年级下学期期末数学试题(解析版)》由会员分享,可在线阅读,更多相关《广东省深圳市南山区2021-2022学年八年级下学期期末数学试题(解析版)(22页珍藏版)》请在金锄头文库上搜索。
1、20212022学年度第二学期期末教学质量监测八年级数学试题一、选择题(本大题共10小题,共30分,在每个小题给出的四个选项中,只有一个是符合题目要求的,请将正确的选项用铅笔涂在答题卡上)1. 对称美在生活中处处可见,下列是历届冬奥会的会徽,其中既是中心对称图形又是轴对称图形的是( )A B. C. D. 【答案】C【解析】【分析】由题意直接根据轴对称图形和中心对称图形的定义进行判断即可【详解】解:A.选项不是轴对称图形,也不是中心对称图形,不符合题意;B.选项不是轴对称图形,也不是中心对称图形,不符合题意;C.选项既是轴对称图形,又是中心对称图形,符合题意;D.选项是轴对称图形,不是中心对称
2、图形,不符合题意;故选:C【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形是解题的关键2. 如图,在平行四边形ABCD中,CEAB,E为垂足,如果D64,则BCE等于( )A. 26B. 30C. 36D. 64【答案】A【解析】【分析】由平行四边形的性质可得B=D=64,即可求解【详解】解:四边形ABCD是平行四边形,B=D=64,CEAB,BCE=26,故选:A【点睛】本题考查了平行四边形的性质,掌握平行四
3、边形的对角相等是解题的关键3. 如图,ABD=CBD,AB=CB,据此可以证明BADBCD,依据是( )A. AASB. ASAC. SASD. HL【答案】C【解析】【分析】依据图形可得到BD=BD,然后依据全等三角形的判定定理进行判断即可【详解】解: , 故选:C【点睛】本题考查三角形全等的判定方法,解题的关键是熟练掌握判定两个三角形全等的一般方法有:SSS,SAS,ASA,AAS、HL;注意:AAA,SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角4. 下列从左边到右边的变形中,是因式分解的是( )A. B. C. D. 【答
4、案】C【解析】【分析】利用因式分解的定义判断即可【详解】解:A、是整式的乘法,不是因式分解,故本选项不符合题意;B、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意;C、符合因式分解的定义,故本选项符合题意;D、右边不是整式的积的形式(含有分式),不符合因式分解的定义,故本选项不符合题意故选:C【点睛】此题考查了因式分解,熟练掌握因式分解的定义是解本题的关键分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式5. 若不等式的解集是,则的取值范围是( ).A. B. C. D. 【答案】D【解析】【分析】在不等式(m+2)xm+2的
5、两边同除以m+2,应根据m+20或m+20,进行分类讨论,再由x1的解集求出m的取值范围【详解】当m+20时,解得:x1,与题目中x1矛盾,故m+20,即m-2时不符合题意;当m+20时,解得:x1,与题目中x的解集一致,故m+20,即m-2时符合题意故m的取值范围为m-2故选:D【点睛】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变6. 如图,在RtABC中,C90,ABC30,AB16,将ABC沿CB方向向右平移得到DEF,若四边形
6、ABED的面积为24,则平移距离是( )A. 2B. 3C. 4D. 6【答案】B【解析】【分析】先根据含30度的直角三角形的性质得到AC,再根据平移的性质得ADBE,ADBE,于是可判断四边形ABED为平行四边形,则根据平行四边形的面积公式得到BE的方程,则可计算出BE3,即得平移距离【详解】解:在RtABC中,C90,ABC30,AB16,ACAB8,ABC沿CB向右平移得到DEF,ADBE,ADBE,四边形ABED为平行四边形,四边形ABED的面积等于24,ACBE24,即8BE24,BE3,即平移距离等于3故选:B【点睛】本题考查了含30角的直角三角形的性质,平移的性质:把一个图形整体
7、沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点连接各组对应点的线段平行且相等也考查了平行四边形的判定与性质7. 下列式子中正确的是( )A. B. C. D. 【答案】A【解析】【分析】根据分式的基本性质即可求出答案【详解】解:A,故选项正确,符合题意;B,故选项错误,不符合题意;C,故选项错误,不符合题意;D,故选项错误,不符合题意故选:A【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型8. 如图,直线经过点,则不等式的解集为()A. B. C. D. 【答
8、案】D【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可【详解】解:观察图象知:当时,故选D【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大9. 如图,已知钝角ABC,依下列步骤尺规作图,并保留作图痕迹步骤1以C为圆心,CA为半径画弧;步骤2以B为圆心,BA为半径画弧,交弧于点D;步骤3连接AD,交BC延长线于点H下列叙述正确的是( )A. BH垂直平分线段ADB. AC平分BADC. SABC=BCAHD. AB=AD【答案】A【解析】【分析】根据线段的垂直平分线的判定解决问题即可【详解】解:A如图连接CD、BD,CA=CD,BA=
9、BD,点C、点B在线段AD的垂直平分线上,直线BC是线段AD的垂直平分线,故A正确,符合题意;BCA不一定平分BDA, 故B错误,不符合题意;C应该是SABC=BCAH,故C错误,不符合题意;D根据条件AB不一定等于AD, 故D错误,不符合题意故选A【点睛】本题考查作图-基本作图,线段的垂直平分线的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题10. 如图,四边形ABCD中ACBC,/,BD为ABC的平分线,BC6,AC8E、F分别是BD、AC的中点,则EF的长为( )A. 2B. 3C. 4D. 5【答案】A【解析】【分析】根据勾股定理得到AB=10,根据平行线的性质和角平分线的
10、定义得到ABD=ADB,求得AB=AD=10,连接BF并延长交AD于G,根据全等三角形的性质得到BF=FG,AG=BC=6,求得DG=10-6=4,根据三角形中位线定理即可得到结论【详解】解:ACBC, ACB=90, BC=6,AC=8 , , ADB=DBC, BD为ABC的平分线, ABD=CBD, ABD=ADB, AB=AD=10, 连接BF并延长交AD于G, GAC=BCA, F是AC的中点, AF=CF, 在AFG和CFB中, AFGCFB(AAS), BF=FG,AG=BC=6, DG=10-6=4, E是BD的中点, EF= DG=2 故选:A【点睛】此题考查了三角形的中位线
11、定理,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键二、填空题(本大题共5小题,共15分请把答案填在答题卡上)11. 当x_时,分式有意义.【答案】 【解析】【分析】根据分式有意义的条件可得x-50,再解即可【详解】分式有意义当x-50即x5.故答案为5.【点睛】分式有意义的条件从以下三个方面透彻理解分式的概念:(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值为零分子为零且分母不为零12. 因式分解:= 【答案】【解析】【详解】解:=故答案为考点:因式分解-运用公式法13. 如图,在ABC中,C90,AD平分BAC交BC于点D,DEAB,垂足为E,若BC8,D
12、E3,则BD的长为_【答案】5【解析】【分析】根据角平分线的性质得出DC=DE=3,再代入BD=BC-DC求出即可【详解】解:C=90,AD平分BAC,DEAB,DE=3,DC=DE=3,BC=8,BD=BCDC=83=5,故答案为:5【点睛】本题考查了角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键14. 如图,1、2、3、4是五边形ABCDE的4个外角,若1234290,则D_【答案】110【解析】【分析】根据多边形的外角和即可求得D的外角,再根据一个内角与于它相邻的外角的关系即可求解【详解】解:如图所示:1234290,5=360-290=70,CDE=180-70=
13、110,故答案为:110【点睛】本题考查了多边形的外角和的性质,熟练掌握多边形的外角和等于360及一个内角与于它相邻的外角互补关系是解题的关键15. 对于任意两个非零实数a、b,定义新运算“*”如下:,例如:若x*y2,则的值为_【答案】1011【解析】【分析】根据新运算法则可得,即,代入原式化简即可求解详解】解:由题意得:x*y2,即,则:,则,故答案为:1011【点睛】本题考查了分式的化简求值,理解新运算法则,将已知化为未知的形式进行化简是解题的关键三、解答题(本大题共7小题,其中,第16题8分,第17题7分,第18题8分,第19题8分,第20题7分,第21题8分,第22题9分,共计55分)16. (1)解不等式:(2)解不等式组:,并把它的解集在数轴上表示出来【答案】(1)x15;(2)x1,数轴见解析【解析】【分析】(1)依次移项、合并同类项、系数化为1可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集【详解】:(1)3x2x+1,移项得,3xx1+2,合并同类项得,2x3,系数化为1得,x1.5;(2),解不等式得:x1,解不等式得:x4,则不等式组的解集为x1,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式和一元一次不等式组,正确求出