《2024年小学数学六年级数学(北京版)-圆锥的体积(二)-1教案》由会员分享,可在线阅读,更多相关《2024年小学数学六年级数学(北京版)-圆锥的体积(二)-1教案(7页珍藏版)》请在金锄头文库上搜索。
1、第一单元第8课时:圆锥的体积(二)年级:六年级 教材版本:北京版授课教师单位及姓名:指导教师单位及姓名:一、教学背景简述学生在圆锥体积的学习中,已经掌握了等底等高的圆柱和圆锥的体积关系,并积累了等积变形的活动经验,在圆柱、圆锥的认识中,进一步积累了图形运动的经验。本节课采用想象、画图、推理等方法,进一步沟通圆柱圆锥体积的内在联系,发展学生的问题解决能力,培养学生的空间观念。二、学习目标1.在活动的过程中,能应用圆柱、圆锥的知识解决实际问题。 2.通过想象、画图、推理等方法,沟通了圆柱与圆锥体积的内在联系,体验到问题解决的多样性,问题解决能力得到进一步发展。 3.通过自主参与活动,感受圆柱、圆锥
2、体积的应用性,体验学习的乐趣。三、教学过程 情景:乐乐一家去草原游玩,发现了很多美丽的事物。这些事物中蕴含着很多的数学问题。你能提出哪些数学问题? 问题串: 1.用一个圆柱形状的木材加工成一个最大的圆锥,这个圆锥的体积是多少?削掉部分的体积又是多少呢? 2.陀螺去掉手柄后,体积是多少? 3.蒙古包所占空间的大小是多少?4.蒙古包的形状可以通过什么样的图形旋转而成呢?活动一:削圆锥问题的解决乐乐用圆柱形木料削成一个最大的圆锥。这个圆锥的体积最大是多少?削掉部分的体积是多少?提出问题:怎么削才会得到体积最大的圆锥呢?得出结论:当圆柱和圆锥等底等高时,圆锥的体积最大。交流方法:方法一:求差半径:42
3、=2(分米)圆柱的体积:223=37.68(立方分米)圆锥的体积:37.6813=12.56(立方分米)削掉部分的体积:37.68-12.56=25.12(立方分米)答:圆锥的体积是12.56立方分米,削掉部分的体积是25.12立方分米。方法二:份数半径:42=2(分米)圆柱的体积:223=12(立方分米)圆锥的体积:123=4(立方分米)削掉部分的体积:42=25.12(立方分米)答:削掉部分的体积是25.12立方分米方法三:求一个的几分之几是多少半径:42=2(分米)圆柱的体积:223=12(立方分米)1- 13 = 23削掉部分的体积:1223=25.12(立方分米)答:削掉部分的体积是
4、25.12立方分米小结:面对一个新的问题,将它和已有经验建立联系就可能解决问题。活动二:陀螺问题的解决陀螺的直径6厘米,每个圆锥的高3厘米,陀螺的体积是多少立方厘米?方法一:一个圆锥的体积2半径:62=3(厘米)一个圆锥的体积:13333=28.26(立方厘米)陀螺的体积:28.262=56.52(立方厘米)答:陀螺的体积是56.52立方厘米。方法二:求一个大圆锥的体积半径:62=3(厘米)陀螺的体积:1333(3+3)=56.52(立方厘米)提出问题:3+3求的是什么?观察思考:变化的是什么,不变的是什么?得出结论:形状变化,高和体积没有变化。当两个圆锥的底面积相等时,就可以转化成一个圆锥来
5、计算。联系生活:沙漏活动三:蒙古包问题的解决数学书第17页第7题 方法一:圆锥的体积+圆柱的体积方法二:圆柱的体积转化成圆锥的体积交流感受:理清圆柱圆锥之间变与不变的关系,是正确解决或者合理灵活的解决问题的基础。活动四:思考题问题:蒙古包的形状可以通过什么图形旋转而成呢?数学书第17页思考题(其中单位改为米,上底改为2米,下底改为3米。)一个直角梯形,如果分别以梯形的上底、下底所在的直线为轴旋转一周,那么所形成的立体图形的体积哪个大?为什么?3米1232米3米先想象一下,旋转后形成的是什么图形?把你想到的在学习单上画一画吧。 (一) 提出猜想预设1:根据图形的特点进行猜想:图1的体积小于图2的
6、体积。预设2:结合削圆锥的经验进行判断:图1的体积大于图2的体积。同一个问题,大家有了不同的想法,到底是哪一个大呢?请你在学习单上写一写,想办法来说明自己的结论吧。(二)得出结论方法一:用份数比较不同之处图1的上半部分是削掉的体积占2份,图2的上半部分是圆锥的体积占1份。2份大于1份,所以图1的体积大。方法二:圆柱的体积-圆锥的体积圆柱的体积:333=27(立方米)圆锥的体积:33(3-2)13=3(立方米)27-3=24=75.36(立方米)75.36立方米65.94立方米所以图1的体积大。小结:通过实践再次证明,遇到一个新问题,将它与已有知识经验建立起联系是非常重要的。回顾反思:当我们遇到问题时,要根据圆柱圆锥的体积关系,充分想象,结合已有的知识经验来灵活解决问题。课后作业:1.数学书第17页第5题。2.数学书第19页第7题 。3.数学书第20页第10题。4.观察生活,提出与圆柱圆锥有关的实际问题,并尝试解答。课前参与:回顾与数理本单元的知识、方法,用自己喜欢的方法表达。