《中考数学二轮复习题型突破练习题型8 函数的实际应用 类型4 抛物线型问题16题(专题训练)(教师版)》由会员分享,可在线阅读,更多相关《中考数学二轮复习题型突破练习题型8 函数的实际应用 类型4 抛物线型问题16题(专题训练)(教师版)(30页珍藏版)》请在金锄头文库上搜索。
1、更多资料添加微信号:DEM2008 淘宝搜索店铺:星哲教育 网址:类型四 抛物线型问题(专题训练)1(2023浙江温州统考中考真题)一次足球训练中,小明从球门正前方的A处射门,球射向球门的路线呈抛物线当球飞行的水平距离为时,球达到最高点,此时球离地面已知球门高为2.44m,现以O为原点建立如图所示直角坐标系(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素)(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?【答案】(1),球不能射进球门;(2)当时他应该带球向正后方移动1米射门【分析
2、】(1)根据建立的平面直角三角坐标系设抛物线解析式为顶点式,代入A点坐标求出a的值即可得到函数表达式,再把代入函数解析式,求出函数值,与球门高度比较即可得到结论;(2)根据二次函数平移的规律,设出平移后的解析式,然后将点代入即可求解【详解】(1)解:由题意得:抛物线的顶点坐标为,设抛物线解析式为,把点代入,得,解得,抛物线的函数表达式为,当时,球不能射进球门;(2)设小明带球向正后方移动米,则移动后的抛物线为,把点代入得,解得(舍去),当时他应该带球向正后方移动1米射门【点睛】此题考查了二次函数的应用,待定系数法求函数解析式、二次函数图象的平移等知识,读懂题意,熟练掌握待定系数法是解题的关键2
3、.现要修建一条隧道,其截面为抛物线型,如图所示,线段表示水平的路面,以O为坐标原点,以所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系根据设计要求:,该抛物线的顶点P到的距离为(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯已知点A、B到的距离均为,求点A、B的坐标【答案】(1)(2)【分析】(1)根据题意,设抛物线的函数表达式为,再代入(0,0),求出a的值即可;(2)根据题意知,A,B两点的纵坐标为6,代入函数解析式可求出两点的横坐标,从而 可解决问题(1)依题意,顶点,设抛物线的函数表达式
4、为,将代入,得解之,得抛物线的函数表达式为(2)令,得解之,得【点睛】本题考查了运用待定系数法求二次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出二次函数的解析式是关键3(2023湖北武汉统考中考真题)某课外科技活动小组研制了一种航模飞机通过实验,收集了飞机相对于出发点的飞行水平距离(单位:)以、飞行高度(单位:)随飞行时间(单位:)变化的数据如下表飞行时间02468飞行水平距离010203040飞行高度022405464探究发现:与,与之间的数量关系可以用我们已学过的函数来描述直接写出关于的函数解析式和关于的函数解析式(不要求写出自变量的取值范围)问题解决:如图,活动小组在水平安
5、全线上处设置一个高度可以变化的发射平台试飞该航模飞机根据上面的探究发现解决下列问题(1)若发射平台相对于安全线的高度为0m,求飞机落到安全线时飞行的水平距离;(2)在安全线上设置回收区域若飞机落到内(不包括端点),求发射平台相对于安全线的高度的变化范围【答案】探索发现:;问题解决:(1);(2)大于且小于【分析】探究发现:根据待定系数法求解即可;问题解决:(1)令二次函数代入函数解析式即可求解;(2)设发射平台相对于安全线的高度为,则飞机相对于安全线的飞行高度结合,即可求解.【详解】探究发现:x与t是一次函数关系,y与t是二次函数关系,设,由题意得:,解得:,问题解决(1)解:依题总,得解得,
6、(舍),当时,答:飞机落到安全线时飞行的水平距离为(2)解:设发射平台相对于安全线的高度为,飞机相对于安全线的飞行高度,在中,当时,;当时,答:发射平台相对于安全线的高度的变化范围是大于且小于【点睛】本题考查了一次函数与二次函数的应用,利用待定系数法求函数的解析式,关键是把实际问题分析转变成数学模型4.甲秀楼是贵阳市一张靓丽的名片如图,甲秀楼的桥拱截面可视为抛物线的一部分,在某一时刻,桥拱内的水面宽,桥拱顶点到水面的距离是(1)按如图所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为的打捞船径直向桥驶来,当船驶到桥拱下方且距点时,桥下水位刚好在处有一名身高的工人站立在打捞船正
7、中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图,桥拱所在的函数图象是抛物线,该抛物线在轴下方部分与桥拱在平静水面中的倒影组成一个新函数图象将新函数图象向右平移个单位长度,平移后的函数图象在时,的值随值的增大而减小,结合函数图象,求的取值范围【答案】(1)y=x2+2x(0x8);(2)他的头顶不会触碰到桥拱,理由见详解;(3)5m8【分析】(1)设二次函数的解析式为:y=a(x-8)x,根据待定系数法,即可求解;(2)把:x =1,代入y=x2+2x,得到对应的y值,进而即可得到结论;(3)根据题意得到新函数解析式,并画出函数图像,进而即可得到m的范围【详
8、解】(1)根据题意得:A(8,0),B(4,4),设二次函数的解析式为:y=a(x-8)x,把(4,4)代入上式,得:4=a(4-8)4,解得:,二次函数的解析式为:y= (x-8)x=x2+2x(0x8);(2)由题意得:x=0.4+1.22=1,代入y=x2+2x,得y=12+21=1.68,答:他的头顶不会触碰到桥拱;(3)由题意得:当0x8时,新函数表达式为:y=x2-2x,当x0或x8时,新函数表达式为:y=-x2+2x,新函数表达式为:,将新函数图象向右平移个单位长度,(m,0),(m+8,0),(m+4,-4),如图所示,根据图像可知:当m+49且m8时,即:5m8时,平移后的函
9、数图象在时,的值随值的增大而减小【点睛】本题主要考查二次函数的实际应用,掌握二次函数的待定系数法,二次函数的图像和性质,二次函数图像平移和轴对称变换规律,是解题的关键5(2023河北统考中考真题)嘉嘉和淇淇在玩沙包游戏某同学借此情境编制了一道数学题,请解答这道题如图,在平面直角坐标系中,一个单位长度代表1m长嘉嘉在点处将沙包(看成点)抛出,并运动路线为抛物线的一部分,淇淇恰在点处接住,然后跳起将沙包回传,其运动路线为抛物线的一部分(1)写出的最高点坐标,并求a,c的值;(2)若嘉嘉在x轴上方的高度上,且到点A水平距离不超过的范围内可以接到沙包,求符合条件的n的整数值【答案】(1)的最高点坐标为
10、,;(2)符合条件的n的整数值为4和5【分析】(1)利用顶点式即可得到最高点坐标;点在抛物线上,利用待定系数法即可求得a的值;令,即可求得c的值;(2)求得点A的坐标范围为,求得n的取值范围,即可求解【详解】(1)解:抛物线,的最高点坐标为,点在抛物线上,解得:,抛物线的解析式为,令,则;(2)解:到点A水平距离不超过的范围内可以接到沙包,点A的坐标范围为,当经过时,解得;当经过时,解得;符合条件的n的整数值为4和5【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键6.2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情如图是某跳台滑雪
11、训练场的横截面示意图,取某一位置的水平线为轴,过跳台终点作水平线的垂线为轴,建立平面直角坐标系图中的抛物线近似表示滑雪场地上的一座小山坡,某运动员从点正上方米处的点滑出,滑出后沿一段抛物线运动(1)当运动员运动到离处的水平距离为米时,离水平线的高度为米,求抛物线的函数解析式(不要求写出自变量的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过米时,求的取值范围【答案】(1);(2)12米;(3)【分析】(1)根据题意可知:点A(0,4)点B(4,8),利用待定系数法代入抛物线即可求解;(2)
12、高度差为1米可得可得方程,由此即可求解;(3)由抛物线可知坡顶坐标为 ,此时即当时,运动员运动到坡顶正上方,若与坡顶距离超过米,即,由此即可求出b的取值范围【详解】解:(1)根据题意可知:点A(0,4),点B(4,8)代入抛物线得,解得:,抛物线的函数解析式;(2)运动员与小山坡的竖直距离为米,解得:(不合题意,舍去), ,故当运动员运动水平线的水平距离为12米时,运动员与小山坡的竖直距离为米;(3)点A(0,4),抛物线,抛物线,坡顶坐标为 ,当运动员运动到坡顶正上方,且与坡顶距离超过米时,解得:【点睛】本题属二次函数应用中的难题.解决函数应用问题的一般步骤为:(1)审题:弄清题意,分清条件
13、和结论,理清数量关系;(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型;(3)求模:求解数学模型,得到数学结论;(4) 还原:将用数学方法得到的结论还原为实际问题7(2023河南统考中考真题)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析如图,在平面直角坐标系中,点A,C在x轴上,球网与y轴的水平距离,击球点P在y轴上若选择扣球,羽毛球的飞行高度与水平距离近似满足一次函数关系;若选择吊球,羽毛球的飞行高度与水平距离近似满足二次函数关系(1)求点P的坐标和a的值(2)小林分析发现,上面两种击球方式均能使球过网要使球的落
14、地点到C点的距离更近,请通过计算判断应选择哪种击球方式【答案】(1),;(2)选择吊球,使球的落地点到C点的距离更近【分析】(1)在一次函数上,令,可求得,再代入即可求得的值;(2)由题意可知,令,分别求得,即可求得落地点到点的距离,即可判断谁更近【详解】(1)解:在一次函数,令时,将代入中,可得:,解得:;(2),选择扣球,则令,即:,解得:,即:落地点距离点距离为,落地点到C点的距离为,选择吊球,则令,即:,解得:(负值舍去),即:落地点距离点距离为,落地点到C点的距离为,选择吊球,使球的落地点到C点的距离更近【点睛】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键8.如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘在轴上,且dm,外轮廓线是抛物线的一部分,对称轴为轴,高度dm现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为dm的圆,请说明理由【答案】(1) ;(2)20dm;(3)能切得半径为3dm的圆【