中考数学二轮复习题型突破练习题型8 函数的实际应用 类型1 最优方案问题22题(专题训练)(教师版)

上传人:gu****iu 文档编号:595337332 上传时间:2024-11-12 格式:DOCX 页数:30 大小:853.21KB
返回 下载 相关 举报
中考数学二轮复习题型突破练习题型8 函数的实际应用 类型1 最优方案问题22题(专题训练)(教师版)_第1页
第1页 / 共30页
中考数学二轮复习题型突破练习题型8 函数的实际应用 类型1 最优方案问题22题(专题训练)(教师版)_第2页
第2页 / 共30页
中考数学二轮复习题型突破练习题型8 函数的实际应用 类型1 最优方案问题22题(专题训练)(教师版)_第3页
第3页 / 共30页
中考数学二轮复习题型突破练习题型8 函数的实际应用 类型1 最优方案问题22题(专题训练)(教师版)_第4页
第4页 / 共30页
中考数学二轮复习题型突破练习题型8 函数的实际应用 类型1 最优方案问题22题(专题训练)(教师版)_第5页
第5页 / 共30页
点击查看更多>>
资源描述

《中考数学二轮复习题型突破练习题型8 函数的实际应用 类型1 最优方案问题22题(专题训练)(教师版)》由会员分享,可在线阅读,更多相关《中考数学二轮复习题型突破练习题型8 函数的实际应用 类型1 最优方案问题22题(专题训练)(教师版)(30页珍藏版)》请在金锄头文库上搜索。

1、更多资料添加微信号:DEM2008 淘宝搜索店铺:星哲教育 网址:类型一 最优方案问题(专题训练)1.某文化用品商店出售书包和文具盒,书包每个定价40元,文具盒每个定价10元,该店制定了两种优惠方案:方案一,买一个书包赠送一个文具盒;方案二:按总价的九折付款,购买时,顾客只能选用其中的一种方案某学校为给学生发奖品,需购买5个书包,文具盒若干(不少于5个)设文具盒个数为x(个),付款金额为y(元)(1)分别写出两种优惠方案中y与x之间的关系式;方案一:y1=_;方案二:y2=_(2)若购买20个文具盒,通过计算比较以上两种方案中哪种更省钱?(3)学校计划用540元钱购买这两种奖品,最多可以买到_

2、个文具盒(直接回答即可)【答案】(1)10x+150;9x+180;(2)详解见解析;(3)40.【解析】(1)由题意,可得y1=405+10(x5)=10x+150,y2=(405+10x)0.9=9x+180故答案为:10x+150,9x+180;(2)当x=20时,y1=1020+150=350,y2=920+180=360,因为350360,所以可看出方案一省钱;(3)如果10x+150540,那么x39,如果9x+180540,那么x40,所以学校计划用540元钱购买这两种奖品,最多可以买到40个文具盒故答案为:40【名师点睛】(1)根据方案一,买一个书包赠送一个文具盒;方案二:按总

3、价的九折付款,即可得出两种优惠方案中y与x之间的关系式;(2)将x=20分别代入(1)中关系式,通过计算比较两种方案中哪种更省钱即可;(3)根据购买时,顾客只能选用其中的一种方案,所以分别求出y540时两种方案中x的最大整数值,比较即可得到答案2(2023浙江统考中考真题)我市“共富工坊”问海借力,某公司产品销售量得到大幅提升为促进生产,公司提供了两种付给员工月报酬的方案,如图所示,员工可以任选一种方案与公司签订合同看图解答下列问题:(1)直接写出员工生产多少件产品时,两种方案付给的报酬一样多;(2)求方案二y关于x的函数表达式;(3)如果你是劳务服务部门的工作人员,你如何指导员工根据自己的生

4、产能力选择方案【答案】(1)30件;(2);(3)若每月生产产品件数不足30件,则选择方案二;若每月生产产品件数就是30件,两种方案报酬相同,可以任选一种;若每月生产产品件数超过30件,则选择方案一【分析】(1)由图象的交点坐标即可得到解答;(2)由图象可得点,设方案二的函数表达式为,利用待定系数法即可得到方案二y关于x的函数表达式;(3)利用图象的位置关系,结合交点的横坐标即可得到结论【详解】(1)解:由图象可知交点坐标为,即员工生产30件产品时,两种方案付给的报酬一样多;(2)由图象可得点,设方案二的函数表达式为,把代入上式,得解得方案二的函数表达式为(3)若每月生产产品件数不足30件,则

5、选择方案二;若每月生产产品件数就是30件,两种方案报酬相同,可以任选一种;若每月生产产品件数超过30件,则选择方案一【点睛】此题考查了从函数图像获取信息、一次函数的应用等知识,从函数图象获取正确信息和掌握待定系数法是解题的关键3(2023内蒙古通辽统考中考真题)某搬运公司计划购买A,B两种型号的机器搬运货物,每台A型机器比每台B型机器每天少搬运10吨货物,且每台A型机器搬运450吨货物与每台B型机器搬运500吨货物所需天数相同(1)求每台A型机器,B型机器每天分别搬运货物多少吨?(2)每台A型机器售价1.5万元,每台B型机器售价2万元,该公司计划采购两种型号机器共30台,满足每天搬运货物不低于

6、2880吨,购买金额不超过55万元,请帮助公司求出最省钱的采购方案【答案】(1)每台A型机器,B型机器每天分别搬运货物90吨和100吨;(2)当购买A型机器人12台,B型机器人18台时,购买总金额最低是54万元【分析】(1)设每台B型机器每天搬运x吨,则每台A型机器每天搬运吨,根据题意列出分式方程,解方程、检验后即可解答;(2设公司计划采购A型机器m台,则采购B型机器台,再题意列出一元一次不等式组,解不等式组求出m的取值范围,再列出公司计划采购A型机器m台与采购支出金额w的函数关系式,最后利用一次函数的增减性求最值即可【详解】(1)解:设每台B型机器每天搬运x吨,则每台A型机器每天搬运吨,由题

7、意可得:,解得:经检验,是分式方程的解每台A型机器每天搬运吨答:每台A型机器,B型机器每天分别搬运货物90吨和100吨(2)解:设公司计划采购A型机器m台,则采购B型机器台由题意可得:,解得:,公司采购金额:w随m的增大而减小当时,公司采购金额w有最小值,即,当购买A型机器人12台,B型机器人18台时,购买总金额最低是54万元【点睛】本题主要考查了分式方程的应用、不等式组的应用、一次函数的应用等知识点,理解题意正确列出分式方程、不等式组和一次函数解析式是解答本题的关键4.为了做好防疫工作,学校准备购进一批消毒液已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53

8、元(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的,请设计出最省钱的购买方案,并求出最少费用【答案】(1)种消毒液的单价是7元,型消毒液的单价是9元;(2)购进种消毒液67瓶,购进种23瓶,最少费用为676元【分析】(1)根据题中条件列出二元一次方程组,求解即可;(2)利用由(1)求出的两种消毒液的单价,表示出购买的费用的表达式,根据购买两种消毒液瓶数之间的关系,求出引进表示瓶数的未知量的范围,即可确定方案【详解】解:(1)设种消毒液的单价是元,型消毒液的单价是元由题意得:,解之得,答:种消毒液的单价是7元,型消毒液的单价是9

9、元(2)设购进种消毒液瓶,则购进种瓶,购买费用为元则,随着的增大而减小,最大时,有最小值又,由于是整数,最大值为67,即当时,最省钱,最少费用为元此时,最省钱的购买方案是购进种消毒液67瓶,购进种23瓶【点睛】本题考查了二元一次不等式组的求解及利用一次函数的增减性来解决生活中的优化决策问题,解题的关键是:仔细审题,找到题中的等量关系,建立等式进行求解5(2023云南统考中考真题)蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意某景区为响应文化和旅游部关于推动露营旅游休闲健康有序发展的指导意见精神,需要购买两种型号的帐篷若购买种型号帐篷2顶和种型号帐篷4顶,则需5

10、200元;若购买种型号帐篷3顶和种型号帐篷1顶,则需2800元(1)求每顶种型号帐篷和每顶种型号帐篷的价格;(2)若该景区需要购买两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买种型号帐篷数量不超过购买种型号帐篷数量的,为使购买帐篷的总费用最低,应购买种型号帐篷和种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?【答案】(1)每顶种型号帐篷的价格为600元,每顶种型号帐篷的价格为1000元(2)当种型号帐篷为5顶时,种型号帐篷为15顶时,总费用最低,为18000元【分析】(1)根据题意中的等量关系列出二元一次方程组,解出方程组后得到答案;(2)根据购买种型号帐篷数量不超过购买种型号帐篷数

11、量的,列出一元一次不等式,得出种型号帐篷数量范围,再根据一次函数的性质,取种型号帐篷数量的最大值时总费用最少,从而得出答案【详解】(1)解:设每顶种型号帐篷的价格为元,每顶种型号帐篷的价格为元根据题意列方程组为:,解得,答:每顶种型号帐篷的价格为600元,每顶种型号帐篷的价格为1000元(2)解:设种型号帐篷购买顶,总费用为元,则种型号帐篷为顶,由题意得,其中,得,故当种型号帐篷为5顶时,总费用最低,总费用为,答:当种型号帐篷为5顶时,种型号帐篷为15顶时,总费用最低,为18000元【点睛】本题考查了二元一次方程组应用,一元一次不等式应用及一次函数的应用,找出准确的等量关系及不等关系是解题的关

12、键6(2023黑龙江绥化统考中考真题)某校组织师生参加夏令营活动,现准备租用、两型客车(每种型号的客车至少租用一辆)型车每辆租金元,型车每辆租金元若辆型和辆型车坐满后共载客人;辆型和辆型车坐满后共载客人(1)每辆型车、型车坐满后各载客多少人?(2)若该校计划租用型和型两种客车共辆,总租金不高于元,并将全校人载至目的地该校有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用、两型客车外,又派出甲、乙两辆器材运输车已知从学校到夏令营目的地的路程为千米,甲车从学校出发小时后,乙车才从学校出发,却比甲车早小时到达目的地下图是两车离开学校的路程(千米)与甲车行驶的时间(小时)之间的函数图象

13、根据图象信息,求甲乙两车第一次相遇后,为何值时两车相距千米【答案】(1)每辆型车、型车坐满后各载客人、人;(2)共有种租车方案,租辆型车,辆型车最省钱;(3)在甲乙两车第一次相遇后,当小时或小时时,两车相距千米【分析】(1)设每辆型车、型车坐满后各载客人、人,由题意列出二元一次方程组,解方程组即可求解;(2)设租用型车辆,则租用型车辆,由题意列出一元一次不等式组,解不等式组,求整数解即可得出的值,设总租金为元,根据一次函数的性质即可求解;(3)设,由题意可知,甲车的函数图像经过;乙车的函数图像经过,两点求出函数解析式,进而即可求解【详解】(1)解:设每辆型车、型车坐满后各载客人、人,由题意得解

14、得答:每辆型车、型车坐满后各载客人、人(2)设租用型车辆,则租用型车辆,由题意得解得:取正整数,共有种租车方案设总租金为元,则随着的增大而减小时,最小租辆型车,辆型车最省钱(3)设,由题意可知,甲车的函数图象经过;乙车的函数图象经过,两点,即解得或解得所以,在甲乙两车第一次相遇后,当小时或小时时,两车相距25千米【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意找到等量关系,列出方程组,不等式组,以及函数解析式是解题的关键7.某鲜花销售公司每月付给销售人员的工资有两种方案方案一:没有底薪,只付销售提成;方案二:底薪加销售提成如图中的射线,射线分别表示该鲜花销

15、售公司每月按方案一,方案二付给销售人员的工资(单位:元)和(单位:元)与其当月鲜花销售量x(单位:千克)()的函数关系(1)分别求与x的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元这个公司采用了哪种方案给这名销售人员付3月份的工资?【答案】(1),;(2)【分析】(1)根据图像中l1和l2经过的点,利用待定系数法求解即可;(2)分别根据方案一和方案二列出不等式组,根据解集情况判断即可【详解】解:(1)根据图像,l1经过点(0,0)和点(40,1200),设的解析式为,则,解得:,l1的解析式为,设的解析式为,由l2经过点(0,800),(40,1200),则,解得:,l2的

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 中考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号