《数学-2024年新高考地区数学名校地市选填压轴题好题汇编16套之2》由会员分享,可在线阅读,更多相关《数学-2024年新高考地区数学名校地市选填压轴题好题汇编16套之2(52页珍藏版)》请在金锄头文库上搜索。
1、2024年新高考地区数学名校地市选填压轴题好题汇编(二)一、单选题1.(2023 广东东莞高三校考阶段练习)已知a=e,b=,c=洞,则()A.c b a B.b a c C.abc D.a c b【答案】C【解析】由lna=lne1n=0.1,InZ?=In=lnl.1,则ln a-ln b =0.1-lnl.l=0.1-ln(l+0.1),4/(x)=x-ln(l+x),/(无)=1-4=户,1十 X L十 X当x 0,y)时,/x)0,则 x)单调递增,即 0.1)0)=0,故0.1,可得lna ln、,即/?;由阴=(1+O.1)I O=1+C;OO.1+C()O.12+CO,l10=
2、1+1OXO.1+C OO.12+C;O.11O=2+C OO.12+C;0.r 2,MC10=1,9 泮,即6 c.bc.故选:C.2.(2023 广东梅州高三梅州市梅江区梅州中学校考阶段练习)已知数列%,的前项和为S“,且q=4,%+%M=4+2(eN*),则使得篦 2023成立的力的最小值为()A.32 B.33 C.44 D.45【答案】D【解析】a+,1+i=4/z+20,当上2 时,a”-+a”=4(-1)+2 ,两式相减得an+l a-l=4.当”为奇数时,%为等差数列,首项为4,公差为4,所 以%=4+4卜)=2 +2,4 +4+1=4 +2 中,令=1 得 q+g=6,故g=
3、6-4 =2,故当为偶数时,%为等差数列,首项为2,公差为4,所 以=2+41-12n-2 ,所以当 为奇数时,S=(4+%+%)+(。2+。4 +一1)二个(4+2+2)+2 0 2 3,解得2 4 5,当,为偶数时,令/+2 0 2 3,解得“246,所以3 2023成立的 的最小值为45.故选:D,、2 一 1,、3.(2023 广东高三统考阶段练习)数列%满 足%+1=1不,且4=1,则数列%的前2024项的4a”十乙和 20 24 二()253A.-6253B.-81771C.6D.17718【答案】C【解析】由题意知:%=1,a2=2-1 12 x-l,一 6 14+2-6 3 1
4、 4 4 x-+2 46易知数列%是周期为4 的数列,20 24 =5。6 X 1+177161 1 36 4 2故选:C.4.(2023 广东高三统考阶段练习)已知。,b,。均大于1,满足 J=2+晦 ,a-1孚 2 =3+log3匕,丝 Y =4+l o g/,则下列不等式成立的是()b-1 c-1A.c b a B.a b c C.acb D.c a1)和y =l o g“,x (旭=2,3,4)的图象相交,在同一平面直角坐标系中画出y =l o g?x、y =l o g3x,y =l o g 4 x与 (x l)的图象如下:x-1根据图象可知a b c.故选:B.5.(20 23 广东
5、佛山 高三校考阶段练习)已知函数/(尤)=尤2-8 x+8,尤20 _ _2x +4,x 0 右互不相寸的头根,尤2,%满足/(占)=/(工2)=/(尤3),则占+尤2+X 3的范围是()A.(2,8)B.(-8,4)C.(-6,0)D.(-6,8)【答案】A【解析】根据函数的解析式可得如下图象若互不相等的实根%满足为)=)=七),根据图象可得巧与与关于尤=4,则/+X3=8,当2网+4 =-8时,则 =-6是满足题意的巧的最小值,且4满足-6%0恒 成 立 则()【解析】设 g(x)=/(x)-2 c o s x,贝 ij g x)=2/(尤)-r(x)+2sin龙 0,故 y=g(x)在定
6、义域R 上是增函数,所以即咱*,所以陪 卜 卜故选:D.7.(2023 湖南长沙高三湖南师大附中校考阶段练习)若正三棱锥尸-ABC满足|A8+AC+AP|=1,则其体积的最大值为()A.B.C.D.-72 84 96 108【答案】C【解析】设正三棱锥的底边长为。,侧棱长为6,I|2 2 2 2=AB+AC+AP=AB+AC+AP+2ABAC+2AC AP+2A B A P,又 VP-A B C=;.SAABC.%=;与,J一+2=3 -1 6 .2 2 T2 2 o 7 b2 3+a2-b2 b2+a2-b2 2.2 72 1 s 2=a+a+b+a+lab-F2ab-=5a+Z?=&=1-
7、5,lab lab设该三棱锥的高为,A n_ 1 a _ V3由正弦定理可知:,sin 3由 3,-16。6 0 =0”立4设 小)=3 尤 4-16 _?0 X O (x)单调递增,当x eS 4 J时,(x)0),x e R.若/(x)在区间(肛2 万)内没有零点,则co的取值范围是A-R B.。卜加 C.o,|D.网H【答案】D【解析】由题设有/(x)=5 +g s i n s ;=sins d令 无)=0,则有5-2=女肛 2即_%+44 x C D因为f(x)在区间(万,2 万)内没有零点,,71 5故存在整数%,使得上万k+j 因为。0,所以左之一 1 且左+:+展,故左=1 或左
8、=0,/5 4 2 8a)+2 8所以或工8 4 8故选:D.9.(2 0 2 3 湖南长沙高三长郡中学校考阶段练习)已知函数/(刈=工2-炉-4 在区间(-8,-2),(道,+?)上都单调递增,则实数a的取值范 围 是()A.0 a 2y/3 B.0 a 4C.0 a 4/3 D.0a0,2 4二函数g(x)一定有两个零点,设 g Q)的两个零点为毛,巧且X _ 2 +V T+62 再 一 2%=2a.x+4,xxi/(x)=2x2-x-4,%x2当时,/(%)在(f,%)上单调递减或为常函数,从而了在2)不可能单调递增,故 0;当 a 0 时,g(2)=a 0 ,故国一 2 ,贝ij 一
9、2 玉 0 ,/(%)在(e,菁)上单调递增,/(x)在(Y,2)上也单调递增,双退)=o ,/3 x2,由了(%)在和(马,”)上都单调递增,且函数的图象是连续的,_ O _./(X)在 1,+上单调递增,欲使“X)在(+?)上单调递增,只需 石,得aM86,综上:实数。的范围是0 0,双曲线C 1:又 一.=1 与双曲线C?:工一工=1 的m 2 8 m离心率分别为G,e?,则()9 3A.G e?的最小值为了 B.e的最小值为;4 2C.e 色的最大值为9:D.e。的最大值为:34 2【答案】B【解析】由题意可得e;=Sm8+m8,则(4 4 y=m+2 8+m 5 2m-二I-8 4
10、mm+-8,由基本不等式,(6 4)2=3+2+生2 3+2、口=2,g p 21,v 1 27 4 m 8 4 V4 4 2当且仅当K9 =m 即加=4 时等号成立,故e色的最小值为:3.m 8 2故 选:B.1L(2023 湖南益阳高三统考阶段练习)给定事件A B,C,且 P(C)0,则下列结论:若尸 0,P(3)0且 互 斥,则 A,8 不可能相互独立;若尸(H C)+尸 国 C)=l,则 A,2 互为对立事件;若 P(ABC)=P(A)P(8)P(C),则 A 氏C 两两独立;若尸(4)=尸(A)-P(A)尸(3),则 A B 相互独立.其中正确的结论有()A.1个 B.2 个 C.3
11、个 D.4 个【答案】B【解析】对于,若 互 斥,贝|P(AB)=。,又尸(A)P(B)0,.尸(A B)KP(A)尸仍),.1A B 不相互独立,正确;对 于 ,尸(A|C)+P(B|C)=帑L 器 =1,./(A C H W B C H 尸(C);扔一枚骰子,记事件A 为 点数大于两点;事件B为 点数大于五点;事件C 为“点数大于一点,4 9 1贝|尸(4 0)=尸(4)=:=二,P(BC)=P(B)=-,6 3 6P(c)=o满 足*4。)+尸(3。)=尸(。),但 4 8 不是对立事件,错误;对 于 ,扔一枚骰子,记事件A 为 点数大于两点;事件8 为“点数大于五点;事件C 为 点数大
12、于六点,贝 1JP(A)=2,p=1,P(C)=0,P(ABC)=0,P(AB)=P(B),6 3 6 6满足 P(ABC)=P(A)P(B)P(C),此时 P(AB)丰 P(A)P(B),事 件 不 相 互 独 立,错误;对于,A AB AB,事件 AB 与 AB 互斥,P(A)=P(A3)+P(AB),又尸(血)=P(A)-尸(A)尸(B),P(A)-P(AB)=P(A)-P(A)P(B),即尸(AB)=尸(A)尸(3),.事件 A,2 相互独立,正确.故选:B.12.(2023 湖南永州高三校联考开学考试)已知函数/(x)=x 3+3 f+x +l,设数列%的通项公式为an=-2n+9,
13、贝!a)+a2)+。9)=()A.3 6 B.2 4 C.2 0 D.1 8【答案】D【解析】/(X)=X3+3X2+X+1=(%+1)3-2(.X+1)+2,所以曲线外 力 的对称中心为(-1,2),即/(x)+/(-2-x)=4,因为。=一2 +9,易知数列%为等差数列,。5=-1,1+%=%+。8 =%+“7 =。4+。6 =2%=-2 ,所以/+/&)=%)+/(%)=/3)+)=/(%)+/(。6)=4,所以/(4)+)+“3 =4 x4 +2 =1 8.故选:D.1 3.(2 02 3 湖南长沙高三长郡中学校联考阶段练 习)在矩形A B C D 中,AB=3,A D =4,现将 A
14、B D沿 折 起 成 B D,折起过程中,当48,C。时,四面体A 3 C。体 积 为()A.2 B.-C.3 s D.近2 2【答案】B【解析】由题可知又4。c r)=。,4 r),c。u 平面4 c。,故 42,平面A C。,又 A Cu 平面A C。,所以A B,A C,即此时,A BC为直角三角形,因为AB=CD=3,A D=B C=4,所以A C=V7,又 B C LC D,A.B 8 c =B,A 8,8 C u 平面 AB C,所以CD,平面AB C,所以四面体4 8。的体积 为:x 3 x g x 3 x =?.故选:B.1 4.(2 02 3 湖南长沙高三长郡中学校联考阶段练
15、习)在三角形A B C 中,AB A C =0,BC =6,A O =-(AB+A C ,胡 在 B C 上 的 投 影 向 量 为,则A O.BC=()2 7 6A.-1 2B.-6C.1 2D.1 8【答案】A【解析】由题意,Z B A C =90,。为8 C 中点,由区 4 在 8 C 上的投影向量为|8AKos2.i:=|B C,IBAICOSB 5即=Z,又 B C =6,BC 6所以区 4衣=网的 cosB=|BC|2=30,所以 AO衣=(3 O-a 4).B e=3O-BC-BA-3C=3x6-30=-12.故选:A.15.(2023 湖南株洲 高三株洲二中校考开学考试)如图,
16、在 xOv平面上有一系列点勺(冷弘),吕 伍,力),匕(%,%).,对每个正整数,点2 位于函数y=d(x 2 0)的图像上,以点巴为圆心的片都与x 轴相切,且 匕与,:匕+i外切.若占=1,且x“+ix“(eN*),居+i,的前 项之和为S“,贝凡。=()【答案】D【解析】因为 匕与 匕+1外切,且都与X轴相切,所以-%)2 +(%一 丫用)2 =%+y用,即(%-%+1)2 +(%-%+1)2 =(%+%+1)2,所以(七-Z+1 )2 =4 ynyn+I=4*3 ,/、1 1 c因 为%+1 V%(几N*),所以乙 七+1=2%当+1,所 以 =2,Xn+Xn所以数列 工 为等差数列,首项,=1,公差d=2,所以工=1+(-1)X2=2-1,所 以/=7 二(eN*),2H 1所以北=xnxn+l2n l 2 +1 y2n l 2n+lJ 2所以 S”=x l-1 +|-1 +1H-2n-l1 1 1 )n z -=x 1-=-(N*2n+lJ 2 I 2n+lJ 2n+V所以邑0=2 02 0 x2 +12 04 1故选:D1 6.(2 02 3 湖南株洲|高三株洲二中校考开学