2025届广东省湛江市达标名校高二上数学期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内写在试题卷、草稿纸上均无效2.答题前,认真阅读答题纸上的《注意事项》,按规定答题一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知,是双曲线C:(,)的两个焦点,过点与x轴垂直的直线与双曲线C交于A、B两点,若是等腰直角三角形,则双曲线C的离心率为( )A. B.C. D.2.校庆当天,学校需要在靠墙的位置用围栏围起一个面积为200平方米的矩形场地.用来展示校友的书画作品.靠墙一侧不需要围栏,则围栏总长最小需要()米A.20 B.40C. D.3.已知点A、是抛物线:上的两点,且线段过抛物线的焦点,若的中点到轴的距离为3,则()A.3 B.4C.6 D.84.已知关于的不等式的解集是,则的值是( )A B.5C. D.75.《周髀算经》是中国最古老的天文学和数学著作,书中提到:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列.若冬至、大寒、雨水的日影子长的和是尺,芒种的日影子长为尺,则冬至的日影子长为( )A.尺 B.尺C.尺 D.尺6.在平面直角坐标系xOy中,过x轴上的点P分别向圆和圆引切线,记切线长分别为.则的最小值为()A.2 B.3C.4 D.57.如图所示,过抛物线的焦点F的直线依次交抛物线及准线于点A,B,C.若,且,则抛物线的方程为()A. B.C. D.8.曲线上的点到直线的最短距离是()A. B.C. D.19.已知圆,为圆外的任意一点,过点引圆的两条切线、,使得,其中、为切点.在点运动的过程中,线段所扫过图形的面积为()A. B.C. D.10.若,则下列不等式不能成立是()A. B.C. D.11.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件12.一个盒子里有3个分别标有号码为1,2,3小球,每次取出一个,记下它的标号后再放回盒子中,共取2次,则在两次取得小球中,标号最大值是3的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.设数列的前n项和为,且是6和的等差中项,若对任意的,都有,则的最小值为________14.曲线在点处的切线方程为_____________________.15.已知,动点满足,则点的轨迹方程为___________.16.曲线在处的切线方程为______三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)已知抛物线上一点到抛物线焦点的距离为,点关于坐标原点对称,过点作轴的垂线,为垂足,直线与抛物线交于两点.(1)求抛物线的方程;(2)设直线与轴交点分别为,求的值;(3)若,求.18.(12分)如图,已知正方体的棱长为,,分别是棱与的中点.(1)求以,,,为顶点的四面体的体积;(2)求异面直线和所成角的大小.19.(12分)已知椭圆的左、右焦点分别为,,且椭圆过点,离心率,为坐标原点,过且不平行于坐标轴的动直线与有两个交点,,线段的中点为.(1)求的标准方程;(2)记直线斜率为,直线的斜率为,证明:为定值;(3)轴上是否存在点,使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.20.(12分)已知椭圆的标准方程为:,若右焦点为且离心率为(1)求椭圆的方程;(2)设,是上的两点,直线与曲线相切且,,三点共线,求线段的长21.(12分)如图,四边形是一块边长为4km正方形地域,地域内有一条河流,其经过的路线是以中点为顶点且开口向右的抛物线的一部分(河流宽度忽略不计),某公司准备投资一个大型矩形游乐场.(1)设,矩形游乐园的面积为,求与之间的函数关系;(2)试求游乐园面积的最大值.22.(10分)已知数列的前项和为,已知,且当,时,(1)证明数列是等比数列;(2)设,求数列的前项和参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1、B【解析】根据等腰直角三角形的性质,结合双曲线的离心率公式进行求解即可.【详解】由题意不妨设,,当时,由,不妨设,因为是等腰直角三角形,所以有,或舍去,故选:B2、B【解析】在出矩形中,设,得到,结合基本不等式,即可求解【详解】如图所示,在矩形中,设,则,根据题意,可得矩形围栏总长为因为,可得,当且仅当时,即时,等号成立,即围栏总长最小需要米.故选:B.3、D【解析】直接根据抛物线焦点弦长公式以及中点坐标公式求结果【详解】设,,则的中点到轴的距离为,则故选:D4、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D5、D【解析】根据题意转化为等差数列,求首项.【详解】设冬至的日影长为,雨水的日影长为,根据等差数列的性质可知,芒种的日影长为,,解得:,,所以冬至的日影长为尺.故选:D6、D【解析】利用两点间的距离公式,将切线长的和转化为到两圆心的距离和,利用三点共线距离最小即可求解.详解】,圆心,半径,圆心,半径设点P,则,即到与两点距离之和的最小值,当、、三点共线时,的和最小,即的和最小值为.故选:D【点睛】本题考查了两点间的距离公式,需熟记公式,属于基础题.7、A【解析】分别过点作准线的垂线,分别交准线于点,,设,推出;根据,进而推导出,结合抛物线定义求出;最后由相似比推导出,即可求出抛物线的方程.【详解】如图分别过点作准线的垂线,分别交准线于点,,设与交于点.设,, ,由抛物线定义得:,故在直角三角形中,,,,,,,∥,,,即,,所以抛物线的方程为.故选:A8、B【解析】先求与平行且与相切的切线切点,再根据点到直线距离公式得结果.【详解】设与平行的直线与相切,则切线斜率k=1,∵∴,由,得当时,即切点坐标为P(1,0),则点(1,0)到直线的距离就是线上的点到直线的最短距离,∴点(1,0)到直线的距离为:,∴曲线上的点到直线l: 的距离的最小值为.故选:B9、D【解析】连接、、,分析可知四边形为正方形,求出点的轨迹方程,分析可知线段所扫过图形为是夹在圆和圆的圆环,利用圆的面积公式可求得结果.【详解】连接、、,由圆的几何性质可知,,又因为且,故四边形为正方形,圆心,半径为,则,故点的轨迹方程为,所以,线段扫过的图形是夹在圆和圆的圆环,故在点运动的过程中,线段所扫过图形的面积为.故选:D.10、C【解析】利用不等式的性质可判断ABD,利用赋值法即可判断C,如.【详解】解:因为,所以,所以,,,故ABD正确;对于C,若,则,故C错误.故选:C.11、A【解析】由三角函数的单调性直接判断是否能推出,反过来判断时,是否能推出.【详解】当时,利用正弦函数的单调性知;当时,或.综上可知“”是“”的充分不必要条件.故选:A【点睛】本题考查判断充分必要条件,三角函数性质,意在考查基本判断方法,属于基础题型.12、C【解析】求出两次取球都没有取到3的概率,再利用对立事件的概率公式计算作答.【详解】依题意,每次取到标号为3 的球的事件为A,则,且每次取球是相互独立的,在两次取得小球中,标号最大值是3的事件M,其对立事件是两次都没有取到标号为3的球的事件,,则有,所以在两次取得小球中,标号最大值是3的概率为.故选:C二、填空题:本题共4小题,每小题5分,共20分。
13、【解析】先根据和项与通项关系得通项公式,再根据等比数列求和公式得,再根据函数单调性得取值范围,即得取值范围,解得结果.【详解】因为是6和的等差中项,所以当时,当时,因此当为偶数时,当为奇数时,因此因为在上单调递增,所以故答案为:【点睛】本题考查根据和项求通项、等比数列定义、等比数列求和公式、利用函数单调性求值域,考查综合分析求解能力,属较难题.14、【解析】首先判定点在曲线上,然后利用导数的几何意义求得答案.【详解】由题意可知点在曲线上,而,故曲线在点处的切线斜率为 ,所以切线方程:,即,故答案为:15、【解析】表示出、,根据题意,列出等式,化简整理即可得答案.【详解】,由题意得,所以整理可得,即.故答案为:.16、【解析】求得的导数,可得切线的斜率和切点,由斜截式方程可得切线方程【详解】解:的导数为,可得曲线在处的切线斜率为,切点为,即有切线方程为故答案为【点睛】本题考查导数的运用:求切线方程,考查导数的几何意义,直线方程的运用,考查方程思想,属于基础题三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17、(1); (2); (3).【解析】(1)运用抛物线的定义进行求解即可;(2)设出直线的方程,与抛物线的方程联立,可求得点和的纵坐标,结合直线点斜式方程、两点间距离公式进行求解即可; (3)利用弦长公式求得,由两点间距离公式求得和,再解方程即可.【小问1详解】抛物线的准线方程为:,因为点到抛物线焦点的距离为,所以有;小问2详解】由题意知,,,设,则,,,,所以直线的方程为,联立,消去得,,解得,设,,,,不妨取,,直线的斜率为,其方程为,令,则,同理可得,所以,而,所以;【小问3详解】,其中,,,因为,所以,化简得,解得(舍负),即,所以【点睛】关键点睛:运用抛物线的定义、弦长公式进行求解是解题的关键.18、(1) (2)【解析】(1)由题意可知该四面体为以为底面,以为高的四面体,可得四面体体积;(2)连接,,可得即为异面直线和所成的角的平面角,根据余弦定理可得角的大小.【小问1详解】解:连接,,,以,,,为顶点的四面体即为三棱锥,底面的面积,高,则其体积;【小问2详解】解:连接,,,则即为异面直线和所成的角的平面角,在中,,,,则,故,即和所成的角的的大小为.19、(1);(2)证明见解析;(3)不存在,理由见解析.【解析】(1)由椭圆所过点及离心率,列方程组,再求解即得;(2)设出点A,B坐标并列出它们满足的关系,利用点差法即可作答;(3)设直线的方程,联立直线与椭圆的方程,借助韦达定理求得,,再结合为等边三角形的条件即可作答.【详解】(1)显然,半焦距c有,即,则,所以椭圆的标准方程为;(2)设,,,,由(1)知,,两式相减得,即,而弦的中点,则有,所以;(3)假定存在符合要求的点P,由(1)知,设直线的方程为,由得:,则,,于是得,从而得点,,因为等边三角形,即有,,因此,,,从而得,整理得,无解,所以在y轴上不存在点,使得为等边三角形.20、(1);(2).。