学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………江西省鹰潭市名校2025届九上数学开学质量跟踪监视模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是( )A.3 B.2 C. D.42、(4分)已知一元二次方程(a≠0)的两根分别为-3,1,则方程(a≠0)的两根分别为( )A.1,5 B.-1,3 C.-3,1 D.-1,53、(4分)如图,在矩形ABCD中,E为AD的中点,∠BED的平分线交BC于点F,若AB=3,BC=8,则FC的长度为( )A.6 B.5 C.4 D.34、(4分)如图,将一个矩形纸片ABCD,沿着BE折叠,使C、D两点分别落在点、处若,则的度数为 A. B. C. D.5、(4分)已知关于的一元二次方程没有实数根,则实数的取值范围是( )A. B. C. D.6、(4分)通过估算,估计的大小应在( )A.7~8之间 B.8.0~8.5之间C.8.5~9.0之间 D.9~10之间7、(4分)已知=5﹣x,则x的取值范围是( )A.为任意实数 B.0≤x≤5 C.x≥5 D.x≤58、(4分)下列说法正确的是( )A.全等的两个图形成中心对称B.成中心对称的两个图形必须能完全重合C.旋转后能重合的两个图形成中心对称D.成中心对称的两个图形不一定全等二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知关于函数,若它是一次函数,则______.10、(4分)函数y=中自变量x的取值范围是______.11、(4分)某种型号的空调经过两次降价,价格比原来下降了36%,则平均每次下降的百分数是_____%.12、(4分)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,如果AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,那么DP:DC等于_____.13、(4分)点A为数轴上表示实数的点,将点A沿数轴平移3个单位得到点B,则点B表示的实数是________.三、解答题(本大题共5个小题,共48分)14、(12分)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?15、(8分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.16、(8分)如图,于点,于点,与相交于点,连接线段,恰好平分.求证:.17、(10分)如图1,在正方形ABCD中,E是BC边上一点,F是BA延长线上一点,AF=CE,连接BD,EF,FG平分∠BFE交BD于点G.(1)求证:△ADF≌△CDE;(2)求证:DF=DG;(3)如图2,若GH⊥EF于点H,且EH=FH,设正方形ABCD的边长为x,GH=y,求y与x之间的关系式.18、(10分)如图1,在平行四边形中,(),垂足为,所在直线,垂足为.(1)求证:(2)如图2,作的平分线交边于点,与交于点,且,求证:B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若关于的一元一次不等式组所有整数解的和为-9,且关于的分式方程有整数解,则符合条件的所有整数为__________.20、(4分)使二次根式有意义的x的取值范围是_____.21、(4分)已知△ABC中,AB=12,AC=13,BC=15,点D、E、F分别是AB、AC、BC的中点,则△DEF的周长是_____.22、(4分)不等式2x+8≥3(x+2)的解集为_____.23、(4分)如图,一架15m长的梯子AB斜靠在一竖直的墙OA上,这时梯子的顶端A离地面距离OA为12m,如果梯子顶端A沿墙下滑3m至C点,那么梯子底端B向外移至D点,则BD的长为___m.二、解答题(本大题共3个小题,共30分)24、(8分) (1)如图1,将矩形折叠,使落在对角线上,折痕为,点落在点 处,若,则 º;(2)小丽手中有一张矩形纸片,,.她准备按如下两种方式进行折叠:①如图2,点在这张矩形纸片的边上,将纸片折叠,使点落在边上的点处,折痕为,若,求的长;②如图3,点在这张矩形纸片的边上,将纸片折叠,使落在射线上,折痕为,点,分别落在,处,若,求的长.25、(10分)如图1,在ABC中,∠A=80°,BD、CE分别平分∠ABC、∠ACB,BD与CE交于点F. (1)求∠BFC的度数;(2)如图2,EG、DG分别平分∠AEF、∠ADF, EG与DG交于点G ,求∠EGD的度数.26、(12分)如图,在等腰△ABC中,AC=BC,D在BC上,P是射线AD上一动点.(1)如图①,若∠ACB=90°,AC=8,CD=6,当点P段AD上,且△PCD是等腰三角形时,求AP长.(2)如图②,若∠ACB=90°,∠APC=45°,当点P在AD延长线上时,探究PA,PB,PC的数量关系,并说明理由.(3)类比探究:如图③,若∠ACB=120°,∠APC=30°,当点P在AD延长线上时,请直接写出表示PA,PB,PC的数量关系的等式.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】利用中位线定理,得到DE∥AB,根据平行线的性质,可得∠EDC=∠ABC,再利用角平分线的性质和三角形内角外角的关系,得到DF=DB,进而求出DF的长.【详解】在△ABC中,D、E分别是BC、AC的中点,∴DE∥AB,∴∠EDC=∠ABC.∵BF平分∠ABC,∴∠EDC=2∠FBD.在△BDF中,∠EDC=∠FBD+∠BFD,∴∠DBF=∠DFB,∴FD=BD=BC=×6=1.故选:A.考查了三角形中位线定理和等腰三角形的判定于性质.三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.2、B【解析】利用换元法令,可得到的值,即可算出的值,即方程(a≠0)的两根.【详解】记,则即的两根为3,1故1,3.故选B.本题主要考查换元法和解一元二次方程.3、D【解析】根据矩形点的性质可得AD∥BC,AD=BC,再求出AE的长度,再根据勾股定理列式求出BE的长,然后根据角平分线的定义求出∠BEF=∠DEF,根据两直线平行,内错角相等求出∠BFE=∠DEF,再求出BEF=∠BFE,根据等角对等边可得BE=BF,然后根据FC=BC-BF代入数据计算即可得解.【详解】解:在矩形ABCD中,AD∥BC,AD=BC=8,∵E为AD的中点,∴AE=AD=×8=4,在Rt△ABE中,,∵EF是∠BED的角平分线,∴∠BEF=∠DEF,∵AD∥BC,∴∠BFE=∠DEF,∴BEF=∠BFE,∴BE=BF,∴FC=BC-BF=8-5=1.故选:D.本题考查了矩形的性质,勾股定理的应用,两直线平行,内错角相等的性质,等角对等边的性质,熟记各性质是解题的关键.4、B【解析】根据折叠前后对应角相等即可得出答案.【详解】解:设∠ABE=x,根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,所以50°+x+x=90°,解得x=20°.故选B.本题考核知识点:轴对称. 解题关键点:理解折叠的意义.5、A【解析】根据判别式的意义得到△=(-2)2-4m<0,然后解关于m的不等式即可.【详解】根据题意得△=(-2)2-4m<0,解得m>1.故选A.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.6、C【解析】先找到所求的无理数在哪两个和它接近的有理数之间,然后判断出所求的无理数的范围.【详解】解:∵64<1<81,∴89,排除A和D,又∵8.52=72.25<1.故选C.7、D【解析】根据二次根式的性质得出5-x≥0,求出即可.【详解】∵,∴5-x≥0,解得:x≤5,故选D.本题考查了二次根式的性质的应用,注意:当a≥0时,=a,当a≤0时,=-a.8、B【解析】根据中心对称图形的概念,即可求解.【详解】解:A、成中心对称的两个图形全等,但全等的两个图形不一定成中心对称,故错误;B、成中心对称的两个图形必须能完全重合,正确;C、旋转180°能重合的两个图形成中心对称,故错误;D、成中心对称的两个图形一定全等,故错误.故选:B.本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为2,可得答案.【详解】由y=是一次函数,得m2-24=2且m-2≠0,解得m=-2,故答案为:-2.本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为2.10、x⩽2且x≠−1.【解析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】由题意得,2−x⩾0且x+1≠0,解得x⩽2且x≠−1.故答案为:x⩽2且x≠−1.此题考查函数自变量的取值范围,解题关键在于掌握各性质定义.11、20%.【解析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可参照增长率问题求解.设平均每次下降的百分数是x,则根据题意可列方程(1-x)2=1-36%,解方程即可求解.注意根据实际意义进行值的取舍.【详解】设平均每次下降的百分数是x,根据题意得(1-x)2=1-36%解方程得x1=0.2=20%,x2=1.8(舍去)所以平均每次下降的百分数是20%.故答案是:20%.考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“-”).12、【。