《活性粉末混凝土设计方法》由会员分享,可在线阅读,更多相关《活性粉末混凝土设计方法(68页珍藏版)》请在金锄头文库上搜索。
1、活性粉末混凝土设计方法通通过过全全过过程程分分析析来来确确定定活活性性粉粉末末混混凝土构件的设计计算方法及公式凝土构件的设计计算方法及公式2021/7/11u活性粉末混凝土在许多方面包括微观结构和性能方面与普通混凝土及其高强混凝土有着较大的差异。从单轴受压的应力-应变曲线可知,活性粉末混凝土在达到强度峰值前表现出较好的弹性特性,切线弹性模量和割线弹性模量比值与普通混凝土相比更加接近,峰值点应变要大于普通混凝土。强度一旦达到峰值后,应力应变曲线下降要比普通混凝土要缓和一些,延性更大一些。2021/7/12u随着活性粉末混凝土在工程结构中的应用,需要对活性粉末混凝土的力学行为、受力特性进行分析和研
2、究,特别需要对活性粉末混凝土的极限承载力问题进行深入的探讨。u本部分结合活性粉末混凝土的力学性能,对活性粉末混凝土的极限承载力进行了数值模拟全过程计算分析,并对影响极限承载力的有关参数进行分析计算,得出参数的适应范围,可供活性粉末混凝土结构的设计使用。2021/7/13一、基本方程1.1 基本假定1.2 几何(变形)条件1.3 物理(本构)关系1.4 力学(平衡)方程2021/7/141.1 基本假定构件从开始受力直至破坏,截面始终保持平面变形。大量的试验证明,在截面开列之前都符合之一变形状态。即使混凝土开裂以后,虽然在裂缝两侧的钢筋和混凝土相对滑移区内不再保持平截面变形,但是,从工程应用观点
3、,沿构件轴线取出一段长度,其平均应变仍满足平截面变形假定平截面变形假定。2021/7/151.1 基本假定钢钢筋筋和和混混凝凝土土之之间间无无滑滑移移。构件开裂之前,钢筋和相邻混凝土间无相对滑移,应变必相等;开裂后二者必有相对滑移,应变不再相等。由于粘结破坏过程为一局部现象,应力状态复杂、变化大,影响因素众多,至今的研究尚不透彻;另一方面,它对构件的整体承载力和变形的作用相对较小,当钢筋有良好的锚固构造情况下。可忽略相对滑移的影响。2021/7/161.1 基本假定材材料料本本构构关关系系可采用钢筋和混凝土材性试验所测得的应力-应变关系。但是,此应力-应变关系是在直压或拉的情况下得到的,在受弯
4、构件中由于存在应变梯度、钢筋的约束等影响,可在实际应用中,可采用塑性修正系数的方法进行适当修正。受弯构件都有剪剪力力作作用用,但剪力对一般构件的轴向和弯曲变形的影响很小,可忽略不计。2021/7/171.2 几何(变形)条件1.2.1 轴心受压构件假定钢筋与RPC粘结完好,不发生相对的滑移。2021/7/181.2 几何(变形)条件1.2.2 受弯构件构件受弯后截面某一高度处的平均应变如图所示。图1-1 截面计算图形2021/7/191.2 几何(变形)条件根据平截面假定距中和轴y(i)处的应变为:当y(i)0混凝土受压; y(i)0混凝土受拉。预应力钢筋应变:受压普通钢筋应变:受拉普通钢筋应
5、变:2021/7/1101.3 物理(本构)关系RPC受压应力受压应力-应变关系:应变关系:2021/7/1111.3 物理(本构)关系图1-2 混凝土受压应力-应变关系2021/7/1121.3 物理(本构)关系RPC受拉应力受拉应力-应变关系:应变关系:2021/7/1131.3 物理(本构)关系图1-3 混凝土受拉应力-应变关系2021/7/1141.3 物理(本构)关系普通钢筋应力普通钢筋应力-应变关系:应变关系:不考虑材料的应不考虑材料的应力强化,其应力力强化,其应力- -应变关系采用理想弹塑性应变关系采用理想弹塑性模型,即:模型,即:2021/7/1151.3 物理(本构)关系预预
6、应应力力钢钢筋筋应应力力-应应变变关关系系:为为了了反反映映预预应应力力筋筋的的力力学学特特性性,当当钢钢筋筋中中的的应应力力小小于于弹弹性性极极限限( (一一般般取取0.7 0.7 ) ),其其应应力力一一应应变变关关系系取取为为直直线线;超超过过弹弹性性极极限限后后,应应力力一一应应变变关关系系可可用用RambergOsgoodRambergOsgood近近似似模模型型模模拟拟如如图图1-41-4所示。所示。2021/7/1161.3 物理(本构)关系2021/7/1171.3 物理(本构)关系图1-4 预应力钢筋应力-应变关系2021/7/1181.4 力学(平衡)方程1.4.1 轴心受
7、压构件对于轴心受压构件,取轴向力平衡:2021/7/1191.4 力学(平衡)方程1.4.2 受弯构件对于受弯构件,取轴向的力平衡和对中和轴的力矩平衡:2021/7/1201.4 力学(平衡)方程2021/7/1211.5 预应力的考虑方法预应力对混凝土截面全过程分析的影响按照部分预应力中的消压概念考虑。如图所示,为有效预加力Npe作用下的截面应变,称为阶段。为施加一个外荷载Np2作用下的截面应变,近似认为全截面高度应变为零(即全部抵销预加力引起的应变)的应力状态。此阶段相当于截面混凝土完全消压,称为阶段,亦称为虚拟阶段。阶段,此后,截面的应变及其相应的弯矩变化与钢筋混凝土相同。只是预应力应为
8、应力增量,同样截面弯矩也为增量,截面抵抗弯矩应为消压弯矩与弯矩增量之和。2021/7/1221.5 预应力的考虑方法图1-8 预应力截面计算图形2021/7/1231.5 预应力的考虑方法2021/7/1241.5 预应力的考虑方法2021/7/1251.5 预应力的考虑方法在此虚拟荷载作用下,混凝土应力为零,若忽略混凝土的收缩和徐变的影响,则非预应力钢筋中的应力为预应力钢筋中的应变与同高度处混凝土的应变相同,即2021/7/1261.5 预应力的考虑方法则虚拟荷载为在应力状态,非预应力钢筋及混凝土的应力皆为零,预应力钢筋的拉力为2021/7/1271.5 预应力的考虑方法阶段:在此阶段可按钢
9、筋混凝土受弯构件的全过程分析方法进行计算分析,可得到的截面应变、应力以及弯矩等。最终,非预应力钢筋和混凝土的应变、应力即为阶段中分析所得;预应力钢筋的应变和应力增量分别为2021/7/1281.5 预应力的考虑方法截面承载能力(弯矩)2021/7/129二、计算结果2.1 轴心受压构件2.2 轴心受拉构件2.3 非预应力T形梁2.4 预应力T形梁2021/7/130图2-1 轴心受压材料本构关系2.1 轴心受压构件2021/7/1312.1 轴心受压构件柱子承受轴向压力后,混凝土和钢筋的应力和变形反应,以及柱的极限承载力等都可运用全过程分析方程、分阶段地进行分析。轴心受力构件只有一个内外力平衡
10、条件: N=Nc+Ns=cAc+sAs钢筋屈服应变小于混凝土峰值应变(yp)2021/7/1322.1 轴心受压构件图2-2 承载能力随配筋率的变化2021/7/1332.1 轴心受压构件配筋率%00.51.01.52.02.53.0最大承载能力变化1.01.013 1.026 1.039 1.052 1.064 1.077表2-1 最大承载能力随配筋率的变化2021/7/1342.1 轴心受压构件从上表中可以看出,轴心受压柱随配筋率的增加而增加,但是,增加的幅度较小,当配筋率达到3%时,只增加7.7%。因而当配筋率小于3%时,可以忽略配筋对承载能力的贡献,只考虑构造要求及增加延性。可按下式计
11、算承载力:2021/7/1352.2 轴心受拉构件混凝土开裂完全退出工作之前混凝土开裂完全退出工作后最小配筋率2021/7/1362.2 轴心受拉构件图2-3 承载能力随配筋率的变化2021/7/1372.3非预应力T形梁对于非预应力活性粉末混凝土T形梁在不同配筋率情况下的全过程分析结果见下图,配筋率选择从04.0%,间隔为0.5%。2021/7/1382.3非预应力T形梁图2-4 截面承载力与配筋率的关系2021/7/1392.3非预应力T形梁图2-4为截面抗弯承载力与应变的关系,从图中可以看出,随着配筋率的增加承载力基本上是线性增加;不同配筋率下曲线均有一个峰值点,此点活性粉末混凝土抗拉强
12、度已处于下降段,钢筋已接近屈服强度,钢筋拉力的增加不足以弥补受拉区活性粉末混凝土拉力的下降量;随着应变的增加,活性粉末混凝土拉力的继续下降,但所占比例已不大,钢筋拉力的继续增加或维持常量,整体抗弯能力基本上维持不变。所以,截面抗弯承载力应以此阶段作为设计计算的依据。2021/7/1402.3非预应力T形梁对于所计算的跨度20m梁,总的荷载弯矩为 ,当配筋率为3.5%(相当于4032钢筋)时截面抗弯承载力已满足要求。当最外侧压应变为 时,活性粉末混凝土最外侧的压应力已达到抗压强度,最外侧拉应力已处于下降段,钢筋的拉应力也已达到抗拉 强 度 , 截 面 所 提 供 的 抗 弯 能 力 为 ,安全系
13、数达到K=2.12。2021/7/1412.3非预应力T形梁2.2.2 截面应力选取配筋率为3.5%,最外侧压应变为 时的截面应力分布作为研究对象。(1)受压区活性粉末混凝土压应力2021/7/1422.3非预应力T形梁图2-5 截面受压区应力分布2021/7/1432.3非预应力T形梁从受压区活性粉末混凝土压应力分布情况可以看出,最外侧边缘应力已达到最大应力,并 且 已 出 现 一 定 塑 性 。 实 际 受 压 区 合 力 : ,受压区高度:X=72.45mm,合力作用点距中和轴的距离:Y=46.19mm,所提供的抗弯能力: 。2021/7/1442.3非预应力T形梁(2)受拉区活性粉末混
14、凝土拉应力图2-6 截面受拉区应力分布2021/7/1452.3非预应力T形梁从受拉区活性粉末混凝土拉应力分布情况可以看出,除中和轴附近应力较高外,其它位置处的拉应力已趋近于零,塑性表现较为明显。实际受拉区合力: ,合力作用点距中和轴的距离:y=171.69mm,所提供的抗弯能力: 。2021/7/1462.3非预应力T形梁(3)受拉区钢筋拉应力钢筋应力已达到计算强度: ,所提供的抗弯能力: 。受压区提供的弯矩所占比例:4.1%受拉区提供的弯矩所占比例:1.3%受拉钢筋提供的弯矩所占比例:94.6%2021/7/1472.3非预应力T形梁2.2.3 截面极限承载力计算方法(1)受压区压应力不考
15、虑塑性按线性分布,受拉区所提供的抗弯能力只占1.29%,所以不考虑受拉区活性粉末混凝土的抗拉作用。受压区高度为:2021/7/1482.3非预应力T形梁合力作用点距中和轴的距离:抗弯能力:计算结果与截面实际提供的抗弯能力相近,两者的比值为: ,抗弯安全系数:K=2.13。2021/7/1492.3非预应力T形梁(2)等效矩形应力法为了简化计算,将受压区活性粉末混凝土的曲线应力图转换成一矩形应力图,当两个图形的体(面)积相等且重心重合时,则总压力的数值和作用位置相同,两者完全等效。设等效矩形应力图的压区高度为 ,均匀的压应力(强度)为 。2021/7/1502.3非预应力T形梁根据等效条件:矩形
16、中心至顶面距离为:则特征参数 ,取整为面积(合力)相等:活性粉末混凝土的棱柱体抗压强度与立方体抗压强度的比值约为0.890.95,可取2021/7/1512.3非预应力T形梁则特征参数取整为则有可取弯曲抗压强度2021/7/1522.3非预应力T形梁受压区高度为:合力作用点距顶面的距离:抗弯能力:计算结果与截面实际提供的抗弯能力相近,两者的比值为: ,抗弯安全系数:K=2.132021/7/1532.3非预应力T形梁2.1.4 截面抗裂性分析活性粉末混凝土受弯构件考虑活性粉末混凝土塑性及配筋的影响,开裂强度可取活性粉末混凝土的极限抗拉强度,实际上当截面出现可见裂缝时应力已处于下降段,应变可以达
17、到2倍以上的峰值点应变。选取配筋率为3.5%的截面应力分布作为研究对象。2021/7/1542.3非预应力T形梁当最外侧活性粉末混凝土的拉应力达到极限强度(不考虑塑性及配筋的影响 )时,截面所提供的抗弯能力为:,抗裂安全系数为:当最外侧活性粉末混凝土的拉应力达到极限强度( )时,截面所提供的抗弯能力为: ,抗裂安全系数为: 。2021/7/1552.3非预应力T形梁当最外侧活性粉末混凝土的拉应变达到峰值点应变的2倍时,截面所提供的抗弯能力为: ,抗裂安全系数为: 。2021/7/1562.3非预应力T形梁抗裂弯矩的计算方法:(1)当最外侧活性粉末混凝土的拉应力达到极限强度的计算假定:受压区、受
18、拉区应力为三角形分布,应变符合平截面假定。根据平衡条件:根据平截面假定:2021/7/1572.3非预应力T形梁整理后可得:解之可得受压区高度:整理后可得:2021/7/1582.3非预应力T形梁(2)当受拉区活性粉末混凝土的拉应力均达到极限强度的计算假定:受压区应力为三角形分布,受拉区应力为矩形分布,应变符合平截面假定。并且最外侧活性粉末混凝土的拉应变按达到峰值点应变的2倍考虑。根据平衡条件:2021/7/1592.3非预应力T形梁2021/7/1602.3非预应力T形梁解之可得受压区高度:整理后可得:抗裂安全系数为: 2021/7/1612.3非预应力T形梁2.1.5 钢筋种类的影响分析普
19、通钢筋的种类选择HRB335、HRB400、PSB830三种钢筋作为对比分析。按合力相等来进行选择配筋。计算结果对比表钢筋种类钢筋面积混凝土压应力钢筋应力抵抗力矩截面曲率HRB3350.0314613033512979.0362 6.1420E-02HRB4000.0263513040012979.5000 6.1418E-02PSB8300.0127013083012978.7218 6.1421E-022021/7/1622.3非预应力T形梁从表中可以看出,不同的钢筋种类,当截面最外边缘压应变达到 时,活性粉末混凝土的压应力、钢筋应力均已达到极限强度,截面所提供的抗弯强度和曲率相差不多。随着钢筋强度的增加,钢筋的根数可以减少,钢筋的布置更为方便。2021/7/1632.4 预应力T形梁计算结果计算结果-预应力T形梁图9-10 截面承载力随压应变的变化 2021/7/1642.4 预应力T形梁2021/7/1652.4 预应力T形梁 图9-11 截面承载力随拉应力的变化 图9-12 截面承载力随拉应变的变化 2021/7/1662.4 预应力T形梁2021/7/167 结束语结束语若有不当之处,请指正,谢谢!若有不当之处,请指正,谢谢!