《机械原理PPT电子课件第3章 平面机构的运动分析析》由会员分享,可在线阅读,更多相关《机械原理PPT电子课件第3章 平面机构的运动分析析(56页珍藏版)》请在金锄头文库上搜索。
1、第三章第三章 平面机构的运动分析平面机构的运动分析31机构运动分析的目的与方法机构运动分析的目的与方法32速度瞬心及其在机构速度分析中的应用速度瞬心及其在机构速度分析中的应用33用矢量方程图解法作机构速度和加速度用矢量方程图解法作机构速度和加速度 分析分析34综合运用瞬心法和矢量方程图解法对复综合运用瞬心法和矢量方程图解法对复 杂机构进行速度分析杂机构进行速度分析35用解析法作机构的运动分析用解析法作机构的运动分析天津工业大学专用 作者: 潘存云教授 作者:潘存云教授ACBED31 机构运动分析的目的与方法机构运动分析的目的与方法设计任何新的机械,都必须进行运动分析工作。以确定机械是否满足工作
2、要求。1.位置分析位置分析研研究究内内容容:位位置置分分析析、速速度度分分析析和和加速度分析。加速度分析。确定机构的位置(位形),绘制机构位置图。确定机构的位置(位形),绘制机构位置图。 确定构件的运动空间,判断是否发生干涉。确定构件的运动空间,判断是否发生干涉。确定构件确定构件(活塞活塞)行程,行程, 找出上下极限位置。找出上下极限位置。从构件从构件点的轨迹点的轨迹构件位置构件位置速度速度加速度加速度原动件的原动件的运动规律运动规律内涵:内涵:确定点的轨迹(连杆曲线),如确定点的轨迹(连杆曲线),如鹤式吊鹤式吊。HEHD天津工业大学专用 作者: 潘存云教授 2.2.速度分析速度分析 通过分析
3、,了解从动件的速度变化规律是否满足通过分析,了解从动件的速度变化规律是否满足 工作要求。如工作要求。如牛头刨牛头刨为加速度分析作准备。为加速度分析作准备。3.加速度分析加速度分析的目的是为确定惯性力作准备。的目的是为确定惯性力作准备。方法:方法: 图解法图解法简单、直观、精度低、求系列位置时繁琐。简单、直观、精度低、求系列位置时繁琐。解析法解析法正好与以上相反。正好与以上相反。实验法实验法试凑法,配合连杆曲线图册,用于解决试凑法,配合连杆曲线图册,用于解决 实现预定轨迹问题。实现预定轨迹问题。天津工业大学专用 作者: 潘存云教授 作者:潘存云教授12A2(A1)B2(B1)32 速度瞬心及其在
4、机构速度分析中的应用速度瞬心及其在机构速度分析中的应用 机机构构速速度度分分析析的的图图解解法法有有:速速度度瞬心法、相对运动法、线图法。瞬心法、相对运动法、线图法。瞬心法瞬心法: 适合于简单机构的运动分析。适合于简单机构的运动分析。一、一、速度瞬心及其求法速度瞬心及其求法绝对瞬心绝对瞬心重合点绝对速度为零。重合点绝对速度为零。P21相对瞬心相对瞬心重合点绝对速度不为零。重合点绝对速度不为零。 VA2A1VB2B1Vp2=Vp10 Vp2=Vp1=0 两两个个作作平平面面运运动动构构件件上上速速度度相相同同的的一一对对重重合合点点,在在某某一一瞬瞬时时两两构构件件相相对对于于该该点点作作相相对
5、对转转动动 ,该该点点称称瞬时速度中心。瞬时速度中心。求法?1)1)速度瞬心的定义速度瞬心的定义天津工业大学专用 作者: 潘存云教授 特点:特点: 该点涉及两个构件。该点涉及两个构件。 2)瞬心数目)瞬心数目 每两个构件就有一个瞬心每两个构件就有一个瞬心 根据排列组合有根据排列组合有P12P23P13构件数构件数 4 5 6 8瞬心数瞬心数 6 10 15 281 2 3若机构中有若机构中有n个构件,则个构件,则N Nn(n-1)/2n(n-1)/2 绝对速度相同,相对速度为零。绝对速度相同,相对速度为零。相对回转中心。相对回转中心。天津工业大学专用 作者: 潘存云教授 121212tt123
6、)机构瞬心位置的确定)机构瞬心位置的确定1.直接观察法直接观察法 适用于求通过运动副直接相联的两构件瞬心位置。适用于求通过运动副直接相联的两构件瞬心位置。nnP12P12P122.三心定律三心定律V12定定义义:三三个个彼彼此此作作平平面面运运动动的的构构件件共共有有三三个个瞬瞬心心,且且它它们们位位于于同同一一条条直直线线上上。此此法法特特别别适适用用于两构件不直接相联的场合。于两构件不直接相联的场合。天津工业大学专用 作者: 潘存云教授 作者:潘存云教授123P21P31E3D3VE3VD3A2VA2VB2A2E3P32结论:结论: P21 、 P 31 、 P 32 位于同一条直线上。位
7、于同一条直线上。B2天津工业大学专用 作者: 潘存云教授 作者:潘存云教授3214举例:求曲柄滑块机构的速度瞬心。举例:求曲柄滑块机构的速度瞬心。P141234P12P34P13P24P23解:瞬心数为:解:瞬心数为:1.作瞬心多边形圆作瞬心多边形圆2.直接观察求瞬心直接观察求瞬心3.三心定律求瞬心三心定律求瞬心N Nn(n-1)/2n(n-1)/26 n=46 n=4连接四边形的对角线,该线是左右两边三角形的公共边,右边三角形三边代表的三个瞬心在同一条直线上,左边三角形三边代表的三个瞬心也在同一条直线上,他们的交点就是瞬心P13天津工业大学专用 作者: 潘存云教授 作者:潘存云教授作者:潘存
8、云教授123465P24P13P15P25P26P35举例:举例:求图示六杆机构的速度瞬心。求图示六杆机构的速度瞬心。解:瞬心数为:解:瞬心数为:N Nn(n-1)/2n(n-1)/215 n=615 n=61.作瞬心多边形圆作瞬心多边形圆2.直接观察求瞬心直接观察求瞬心3.三心定律求瞬心三心定律求瞬心P46P36123456P23P12P16P34P56P45P14选择一个四边形,并连接对角线天津工业大学专用 作者: 潘存云教授 1 1123四、速度瞬心在机构速度分析中的应用四、速度瞬心在机构速度分析中的应用1.求线速度求线速度已知凸轮转速已知凸轮转速1 1,求推杆的速度。求推杆的速度。P2
9、3解:解:直接观察求瞬心直接观察求瞬心P13、 P23 。V2求瞬心求瞬心P12的速度的速度 。 V2V P12l(P13P12)1 1长度长度P13P12直接从图上量取。直接从图上量取。P13 根据三心定律和公法线根据三心定律和公法线 nn求瞬心的位置求瞬心的位置P12 。nnP12天津工业大学专用 作者: 潘存云教授 P24P13作者:潘存云教授2 22.求角速度求角速度解:解:瞬心数为瞬心数为 6个个直接观察能求出直接观察能求出 4个个余下的余下的2个用三心定律求出。个用三心定律求出。求瞬心求瞬心P24的速度的速度 。VP24l(P24P14)4 4 2 (P24P12)/ P24P14
10、 a)铰链机构铰链机构已知构件已知构件2的转速的转速2 2,求构件求构件4的角速度的角速度4 4 。 VP24l(P24P12)2方向方向: CW, 与与2 2相同。相同。相对瞬心位于两绝对瞬心的同一侧,两构件转向相同VP2423414 4P12P23P34P14天津工业大学专用 作者: 潘存云教授 312b)高副机构高副机构已知构件已知构件2的转速的转速2 2,求构件求构件3的角速度的角速度3 3 。2 2解解: 用三心定律求出用三心定律求出P P2323 。求瞬心求瞬心P P2323的速度的速度 :VP23l(P23P13)3 3 3 32 2(P13P23/ /P12P23) )P P1
11、212P P1313方向方向: CCW, 与与2 2相反。相反。VP23VP23l(P23P12)2 2相对瞬心位于两绝对瞬心之间,两构件转向相反。n nn nP P23233 3天津工业大学专用 作者: 潘存云教授 312P P2323P P1313P P12123.求传动比求传动比定义:两构件角速度之比传动比。定义:两构件角速度之比传动比。3 3 /2 2 P12P23 / / P13P23推广到一般:推广到一般: i i /j j P1jPij / / P1iPij结论结论: :两构件的角速度之比等于绝对瞬心至相对两构件的角速度之比等于绝对瞬心至相对瞬心的距离之反比瞬心的距离之反比。角速
12、度的方向为:角速度的方向为:相对瞬心位于两绝对瞬心的相对瞬心位于两绝对瞬心的同一侧同一侧时,两构件时,两构件转向相同转向相同。相对瞬心位于两绝对瞬心相对瞬心位于两绝对瞬心之间之间时,两构件时,两构件转向相反。转向相反。2 23 3天津工业大学专用 作者: 潘存云教授 4.4.用瞬心法解题步骤用瞬心法解题步骤绘制机构运动简图;绘制机构运动简图;求瞬心的位置;求瞬心的位置;求出相对瞬心的速度求出相对瞬心的速度; ;瞬心法的优缺点:瞬心法的优缺点:适合于求简单机构的速度,机构复杂时因适合于求简单机构的速度,机构复杂时因 瞬心数急剧增加而求解过程复杂。瞬心数急剧增加而求解过程复杂。 有时瞬心点落在纸面
13、外。有时瞬心点落在纸面外。仅适于仅适于求速度求速度V V, ,使应用有一定局限性。使应用有一定局限性。求构件绝对速度求构件绝对速度V V或角速度或角速度。天津工业大学专用 作者: 潘存云教授 CD33 用矢量方程图解法作机构速度和加速度分析用矢量方程图解法作机构速度和加速度分析一、基本原理和方法一、基本原理和方法1.矢量方程图解法矢量方程图解法 因因每每一一个个矢矢量量具具有有大大小小和和方方向向两两个个参参数数,根根据据已已知条件的不同,上述方程有以下四种情况:知条件的不同,上述方程有以下四种情况:设有矢量方程:设有矢量方程: D A + B + C D A + B + C大小:大小: ?
14、? 方向:方向: DABCAB D A + B + C 大小:?大小:? 方向:?方向:? 天津工业大学专用 作者: 潘存云教授 BCB D A + B + C 大小:大小: 方向:方向: ? ? D A + B + C大小:大小: ? 方向:方向: ? DACDA天津工业大学专用 作者: 潘存云教授 2.同一构件上两点速度和加速度之间的关系同一构件上两点速度和加速度之间的关系 1) 速度之间的关系速度之间的关系选速度比例尺选速度比例尺v m/s/mm,在任意点在任意点p作图使作图使VAvpa,ab同理有:同理有: VCVA+VCA 大小:大小: ? ? 方向:方向: ? ? CACA相对速度
15、为:相对速度为: VBAvabVBVA+VBA按图解法得:按图解法得: VBvpb, 不可解!不可解!p设已知大小:设已知大小: 方向:方向: BABA? ?方向:方向:p c方向:方向: a c BACvB天津工业大学专用 作者: 潘存云教授 abpc同理有:同理有: VCVB+VCB大小:大小: ? ?方向:方向: ? ? CBCBVCVA+VCA VB+VCB不可解!不可解!联立方程有:联立方程有:作图得:作图得:VCv pcVCAv acVCBv bc方向:方向:p c方向:方向: a c 方向:方向: b c 大小:大小: ? ? ? 方向:方向: ? ? CA CBCA CBACB
16、天津工业大学专用 作者: 潘存云教授 作者:潘存云教授ACBcabpVBA/L/LBABAvab/l AB 同理:同理:vca/l CA称称pabc为为速度多边形速度多边形(或速度图解(或速度图解) ) p p为为极点。极点。得:得:ab/ABbc/ BCca/CA abcabcABCABC 方向:方向:CW强调用相对速度求vcb/l CBcabp天津工业大学专用 作者: 潘存云教授 作者:潘存云教授作者:潘存云教授cabpACB速度多边形速度多边形的性质的性质:联接联接p点和任一点的向量代表该点和任一点的向量代表该 点在机构图中同名点的绝对速点在机构图中同名点的绝对速 度,指向为度,指向为p
17、该点。该点。联接任意两点的向量代表该两点联接任意两点的向量代表该两点 在在机构图中同名点的相对速度,机构图中同名点的相对速度, 指向与速度的下标相反。如指向与速度的下标相反。如bc代代 表表VCB而不是而不是VBC ,常用相对速常用相对速 度来求构件的角速度。度来求构件的角速度。abcabcABCABC,称称abcabc为为ABCABC的速的速 度影象,两者相似且字母顺序一致。度影象,两者相似且字母顺序一致。 前者沿前者沿方向转过方向转过9090。称。称pabcpabc为为 PABCPABC的速度影象。的速度影象。特别注意:影象与构件相似而不是与机构位形相似!特别注意:影象与构件相似而不是与机
18、构位形相似!P极点极点p代表机构中所有速度为零的点的影象。代表机构中所有速度为零的点的影象。绝对瞬心D天津工业大学专用 作者: 潘存云教授 作者:潘存云教授cabp作者:潘存云教授ACB速度多边形的用途:速度多边形的用途: 由两点的速度可求任意点的速度由两点的速度可求任意点的速度。例例如如,求求BCBC中中间间点点E E的的速速度度V VE E时时,bcbc上上中中间间点点e e为为E E点点的的影影象,联接象,联接pepe就是就是V VE EEe思考题:思考题:连架杆连架杆AD的速度影像在何处的速度影像在何处?D天津工业大学专用 作者: 潘存云教授 b作者:潘存云教授BAC2) 加速度关系加
19、速度关系求得:求得:aBapb选加速度比例尺选加速度比例尺a m/s2/mm,在任意点在任意点p作图使作图使aAapab”设已知角速度设已知角速度,A点加速度和点加速度和aB的方向的方向A B两点间加速度之间的关系有:两点间加速度之间的关系有: aBaA + anBA+ atBAatBAab”b方方向向: b” baBAab a方方向向: a b b 大小:大小: 方向:方向:?BABA?B BA A2 2lABaAaBap天津工业大学专用 作者: 潘存云教授 作者:潘存云教授aCaA + anCA+ atCA aB + anCB+ atCB 又:又: aC aB + anCB+ atCB不可
20、解!不可解!联立方程:联立方程:同理:同理: aCaA + anCA+ atCA 不可解!不可解!作图求解得作图求解得: : atCAac”c atCBacc”方向:方向:c” c 方向:方向:c” c 方向:方向:p c ? ? ? ? ? ? BAC大小:大小: ? 方向:方向: ? 2 2lCAC CA A? ? CACA大小:大小: ? 方向:方向: ?2 2lCBC CB B? ?CBCBbb”apc”c”caCapc天津工业大学专用 作者: 潘存云教授 作者:潘存云教授作者:潘存云教授角加速度:角加速度:atBA/ lAB得:得:ab/ lABbc/ lBC a c/ lCA称称p
21、abc为为加速度多边形加速度多边形(或速度图解)(或速度图解), p极点极点 abcABC 加速度多边形的特性:加速度多边形的特性:联接联接p点和任一点的向量代表该点和任一点的向量代表该 点在机构图中同名点的绝对加速点在机构图中同名点的绝对加速 度,指向为度,指向为p 该点。该点。aBA ( (atBA) )2 2+( (anBA) )2 2aCA ( (atCA) )2 2+( (anCA) )2 2aCB ( (atCB) )2 2+( (anCB) )2 2方向:方向:CCWa b”b /l ABbb”apc”c”cBAClCA 2 2 + + 4 4lCB 2 2 + + 4 4lAB
22、 2 2 + + 4 4aaba aca bc天津工业大学专用 作者: 潘存云教授 作者:潘存云教授作者:潘存云教授BAC联接任意两点的向量代表该两点在机构图中同名点联接任意两点的向量代表该两点在机构图中同名点 的相对加速度,指向与速度的下标相反。如的相对加速度,指向与速度的下标相反。如ab代代 表表aBA而不是而不是aAB , bc aCB , ca aAC 。 abcABC,称称abc为为ABC的的 加速度影象,称加速度影象,称pabc为为PABC的加速的加速 度影象,两者相似且字母顺序一致。度影象,两者相似且字母顺序一致。极点极点p代表机构中所有加速度为零的点代表机构中所有加速度为零的点
23、 的影象的影象。特特别别注注意意:影影象象与与构构件件相相似似而而不不是与机构位形相似!是与机构位形相似!用用途途:根根据据相相似似性性原原理理由由两两点点的的加加速度求任意点的速度求任意点的加加速度。速度。例如例如: :求求BCBC中间点中间点E E的的加加速度速度a aE Ebc上中间点e为E点的影象,联接pe就是aE。bb”apc”c”cE 常用相对切向加速度来求构件的角加速度。常用相对切向加速度来求构件的角加速度。e天津工业大学专用 作者: 潘存云教授 B1 13 32 2AC12BB122.两构件重合点的速度及加速度的关系两构件重合点的速度及加速度的关系 1)回转副回转副速度关系速度
24、关系 VB1=VB2 aB1=aB2 VB1VB2 aB1aB2具体情况由其他已知条件决定具体情况由其他已知条件决定仅考虑移动副2)高副和移动副高副和移动副 VB3VB2+VB3B2pb2b3 VB3B2 的方向的方向: b2b b3 3 3 3 = = vpb3 / lCB3 31 1大小:大小:方向:方向: ? ?BCBC公共点公共点天津工业大学专用 作者: 潘存云教授 作者:潘存云教授3 3B1 13 32 2AC1 1pb2b3ak B3B2 加速度关系加速度关系aB3 apb3, 结结论论:当当两两构构件件构构成成移移动动副副时时,重重合合点点的的加加速速度度不不相相等等,且且移移动
25、动副副有有转转动动分分量量时时,必必然然存存在在哥哥氏氏加加速速度度分量。分量。+ akB3B2 大小:大小:方向:方向:b2kb 33akB3B2的方向:的方向:VB3B2 顺顺3 3 转过转过9090 3 atB3 /lBC ab3b3 /lBCarB3B2 akb3 B C? ?2 23 3l lBCBC B BC C? ?l1 12 21 1B BA A ?BCBC2 2VB3B23 3 aB3 = anB3+ atB3 = aB2+ arB3B2此方程对吗?b” 3p图解得:图解得:天津工业大学专用 作者: 潘存云教授 作者:潘存云教授c二、用矢量方程图解法作机构速度和加速度分析二、
26、用矢量方程图解法作机构速度和加速度分析已知摆式运输机运动简图、各构件尺寸、已知摆式运输机运动简图、各构件尺寸、2 2,求:求:解:解:1)速度分析速度分析 VBLAB2 2 , VVB /pb VC VB+ VCB ABCDEF123456bV VF F、aF F、3 3、4 4、5 5、3 3、4 4、5 5构件构件3、4、5中任一速度为中任一速度为Vx的点的点X3、X4、X5的位置的位置构件构件3、5上速度为零的点上速度为零的点I3、I5构件构件3、5上加速度为零的点上加速度为零的点Q3、Q5点点I3、I5的加速度的加速度 Q3 、Q52 2大小:大小: ? 方向:方向:CD CD p ?
27、BCBC天津工业大学专用 作者: 潘存云教授 作者:潘存云教授作者:潘存云教授e从图解上量得从图解上量得:VCB Vbc VCVpc 方向:方向:b c方向:方向:CW4 4 VC / /lCDCD方向:方向:CCWABCDEF1234562 23 34 4VC VB+ VCB cb利利用用速速度度影影象象与与构构件件相相似似的的原原理理,可求得影象点可求得影象点e。图解上式得图解上式得pef:VFVE+ VFE 求构件求构件6的速度的速度: VFE v ef e f 方向:方向:p f 5 5VFE / /lFEFE方向:方向:CW 大小:大小: ?方向:方向:/DFcb3 3 VCB /
28、/lCBCB方向:方向:p cf ?EFEFVF v pf p5 5天津工业大学专用 作者: 潘存云教授 作者:潘存云教授作者:潘存云教授作者:潘存云教授ec”bcc”ABCDEF123456加速度分析:加速度分析:?24 lCDCD? CD23 lCB CB ?BC2 23 34 4aC = anC+ atC Pcbfp作图求解得作图求解得: 4= atC / lCD 3 = atCB/ lCB 方向:方向:CCW 方向:方向:CCW aC =a pc = aB + anCB+ atCB 不可解,再以B点为牵连点,列出C点的方程利用影象法求得利用影象法求得e点的象点的象e4 43 3aBC
29、=a bc 方向:方向:b c方向:方向:p c c得:得: aE =a pe 5 5e天津工业大学专用 作者: 潘存云教授 作者:潘存云教授作者:潘存云教授c”bcc”ABCDEF123456求构件求构件6的加速度:的加速度:?/DF2 25 5 lFEFE F E ?FE2 23 34 4Pcbfp作图求解得作图求解得: 5 = atFE/ lFE 方向:方向:CW aF =a pf 4 43 35 5atFE =a f”f 方向:方向:f” f方向:方向:p f aF = aE + anFE + atFE eff”5 5e天津工业大学专用 作者: 潘存云教授 作者:潘存云教授作者:潘存云
30、教授I I5 5I I3 3I I3 3x x3 3ABCDEF1234562 2cbfpx x4 4利利用用速速度度影影象象和和加加速速度度影影象象求求特特殊点的速度和加速度:殊点的速度和加速度:求构件求构件3、4、5中任一速度中任一速度为为Vx的的X3、X4、X5点的位置。点的位置。x x5 5x利利用用影影象象法法求求特特殊殊点点的的运运动动参数:参数:求作求作bcxBCXBCX3 3 得得X X3 3构件构件3、5上速度为零的点上速度为零的点I3、I5 cexCEXCEX4 4 得得X X4 4 efxEFXEFX5 5 得得X X5 5求作求作bcpBCIBCI3 3 得得I I3
31、3efpEFIEFI5 5 得得I I5 5x x3 3x x4 4x x5 5I I5 5天津工业大学专用 作者: 潘存云教授 作者:潘存云教授作者:潘存云教授i5Q3c”bcc”Peff”构件构件3、5上加速度为零的上加速度为零的点点Q3、Q5点点I3、I5的加速度的加速度aI3、aQ5CQ5i3求得:求得:aI3=a pi3aI5=a pi5求作求作bcpBCQ3 得得Q3 efpEFQ5 得得Q5求作求作bci3BCI3 求作求作efpEFQ5 ABCDEF1234562 2I I3 3I I5 5Q3Q5i3i5天津工业大学专用 作者: 潘存云教授 作者:潘存云教授ABCDGH解题关
32、键:解题关键:1. 以作平面运动的构件为突破以作平面运动的构件为突破口,口,基准点和基准点和 重合点都应选取重合点都应选取该构件上的铰接点该构件上的铰接点,否,否 则已知则已知条件不足而使无法求解。条件不足而使无法求解。EF如:如: VE=VF+VEF 如选取铰链点作为基点时,所列方程仍不能求解,如选取铰链点作为基点时,所列方程仍不能求解,则此时应联立方程求解。则此时应联立方程求解。 如:如: VG= VB+VGB 大小:大小: ? ? 方向:方向: ? VC=VB+VCB ? ? ? VC+VGC = VG ? ? ? ? 大小大小: ? ? ? 方向:方向:? ? 天津工业大学专用 作者:
33、 潘存云教授 作者:潘存云教授作者:潘存云教授ABCD4321ABCD1234重重合合点点的的选选取取原原则则,选选已已知知参参数数较较多的点(一般为铰链点)多的点(一般为铰链点)应将构件扩大至包含应将构件扩大至包含B B点点!如选如选B点:点: VB4 = VB3+VB4B3如选如选C点:点: VC3 = VC4+VC3C4图图( (b)b)中取中取C C为重合点,为重合点,有有: : VC3= VC4+VC3C4大小:大小: ? ? ? 方向:方向: ? tt不可解!不可解!不可解!不可解!可解!可解!大小:大小: ? 方向:方向: ? ? ? 大小:大小: ? 方向:方向: ? (a)(
34、a)(b)(b)天津工业大学专用 作者: 潘存云教授 作者:潘存云教授作者:潘存云教授作者:潘存云教授1ABC234ABCD4321tt(b)(b)图图( (C)C)所示所示机构,重合点应选在何处?机构,重合点应选在何处?B B点点! !当取当取B B点为重合点时点为重合点时: : VB4 = VB3 + VB4B3 ABCD1234tt(a)(a)VC3 = VB3+VC3B3不可解!不可解!大小:大小: ? 方向:方向: 方程可解方程可解 ? ? 同立可列出构件同立可列出构件3上上C、B点的关系:点的关系:大小:大小:? 方向:方向:? ? ? 天津工业大学专用 作者: 潘存云教授 作者:
35、潘存云教授2 2.正确判哥式加速度的存在及其方向正确判哥式加速度的存在及其方向无无ak 无无ak 有有ak 有有ak 有有ak 有有ak 有有ak 有有ak 动坐标平动时,无动坐标平动时,无ak 判断下列几种情况取判断下列几种情况取B点为重合点时有无点为重合点时有无ak 当两构件构成移动副:当两构件构成移动副: 且动坐标含有转动分量时,存在且动坐标含有转动分量时,存在ak B123B123B1231B23B123B123B123B123 天津工业大学专用 作者: 潘存云教授 作者:潘存云教授A B C D E F G 1 2 3 4 5 6 34综合运用瞬心法和矢量方程图解法综合运用瞬心法和矢
36、量方程图解法 对复杂机构进行速度分析对复杂机构进行速度分析 对于某些复杂机构,单独运用瞬心法或矢量方程图解法解题时,都很困难,但将两者结合起来用,将使问题的到简化。如如图图示示级级机机构构中中,已已知知机机构构尺尺寸寸和和2 2,进进行行运运动分析。动分析。不可解!不可解!VC = VB+VCB用瞬心法确定构件用瞬心法确定构件4 4的瞬心,的瞬心,ttVC = VB+VCB此方法常用于此方法常用于级机构的运动分析。级机构的运动分析。确定确定C C点的方向后,则有:点的方向后,则有:大小:大小: ? ? 方向:方向: ? 可解!可解!大小:大小: ? ? 方向:方向: I4天津工业大学专用 作者
37、: 潘存云教授 35 用解析法作机构的运动分析用解析法作机构的运动分析图解法的缺点:图解法的缺点:分析结果精度低;分析结果精度低; 随着计算机应用的普及,解析法得到了广泛的应用。随着计算机应用的普及,解析法得到了广泛的应用。作图繁琐、费时,不适用于一个运动周期的分析。作图繁琐、费时,不适用于一个运动周期的分析。 解析法:解析法:复数矢量法、矩阵法、杆组法等。复数矢量法、矩阵法、杆组法等。不便于把机构分析与综合问题联系起来。不便于把机构分析与综合问题联系起来。 思路:思路: 由由机机构构的的几几何何条条件件,建建立立机机构构的的位位置置方方程程,然然后后就就位位置置方方程程对对时时间间求求一一阶
38、阶导导数数,得得速速度度方方程程,求求二二阶阶导导数得到机构的加速度方程。数得到机构的加速度方程。天津工业大学专用 作者: 潘存云教授 强调以后要用!作者:潘存云教授Ljiyx一、矢量方程解析法一、矢量方程解析法1.矢量分析基本知识矢量分析基本知识其中:其中:l矢量的模,矢量的模,幅角,幅角,各幺矢量为:e矢量矢量L的的幺矢量,幺矢量, e t切向幺矢量切向幺矢量, 则任意平面矢量的可表示为:则任意平面矢量的可表示为:幺矢量幺矢量单位矢量单位矢量etenijeen法向幺矢量法向幺矢量i x轴的幺矢量轴的幺矢量 jy轴的幺矢量轴的幺矢量 天津工业大学专用 作者: 潘存云教授 作者:潘存云教授作者
39、:潘存云教授2 21 1e2e1jiyxLj幺矢量的点积运算:幺矢量的点积运算:e i ej sin- cos (2 2 1 1 ) cos (2 2 1 1 ) 1e j e e e2 2 ete et t 0 ene en n - -1e1 e2 e1 e2n e1 e2t jiyx ei cos- sin (2 2 1 1 )ieeieje2ne2t强调后续要用到此结论天津工业大学专用 作者: 潘存云教授 v t求一阶导数有:求一阶导数有:求二阶导数有:求二阶导数有:v ratLa r离心离心( (相对相对) )速度速度v r切向速度切向速度v tanak切向加速度切向加速度at 向心加
40、速度向心加速度an离心离心(相对相对)加速度加速度a r 哥式加速度哥式加速度ak 天津工业大学专用 作者: 潘存云教授 对同一个构件,对同一个构件,l为常数为常数,有:有:Lv r=0ak=0ar=0天津工业大学专用 作者: 潘存云教授 作者:潘存云教授DABC12341231x xy y2.平面机构的运动分析平面机构的运动分析一、位置分析一、位置分析将各构件用杆矢量表示,则有:将各构件用杆矢量表示,则有: 已已知知: 图图示示四四杆杆机机构构的的各各构构件件尺尺寸寸和和1 1 , ,求求2 2、3 3、2 2、3 3、2 2、2 2 。L1+ L2 L3+ L4 移项得:移项得: L2 L
41、3+ L4 L1 (1)化成直角坐标形式有:化成直角坐标形式有: l2 cos2 2l3 cos3 3+ l4 cos4 4l1 cos1 1 (2)大小:大小: 方向方向 2? ? 3? ? l2 sin2 2l3 sin3 3+ l4 sin4 4l1 sin1 1 (3)天津工业大学专用 作者: 潘存云教授 (2)、(3)平方后相加得:平方后相加得:l22l23 l24 l212 l3 l4cos3 3 2 l1 l3(cos3 3 cos1 1sin3 3 sin1 1)2 l1 l4cos1 1 整理后得整理后得: Asin3 3+ +Bcos3 3+C=0 (4)其中其中:A=2
42、l1 l3 sin1 1 B=2 l3 (l1 cos1 1 l4) C= l22l23l24l212 l1 l4cos1 1 解三角方程得:解三角方程得: tan(3 3 / 2)=Asqrt(A2+B2C2) / (BC)同理,为了求解同理,为了求解2 2 ,可将矢量方程写成如下形式:可将矢量方程写成如下形式: L3 L1+ L2 L4 (5) 由连续性确定采用哪组解天津工业大学专用 作者: 潘存云教授 化成直角坐标形式:化成直角坐标形式: l3 cos3 3l1 cos1 1+ l2 cos2 2l4 (6) (6)、(7)平方后相加得:平方后相加得:l23l21 l22 l242 l1
43、 l2cos1 1 2 l1 l4(cos1 1 cos2 2 sin1 1 sin2 2 )2 l1 l2cos1 1整理后得整理后得: Dsin2 2Ecos2 2F=0 (8)其中其中:D=2 l1 l2 sin1 1E=2 l2 (l1 cos1 1 l4 )F= l21+l22+l24l23 2 l1 l4 cos1 1 解三角方程得:解三角方程得: tan(2 2 / 2)=Dsqrt(D2+E2F2) / (EF)l3 sin3 3l1 sin1 1+ l2 sin2 20 (7)天津工业大学专用 作者: 潘存云教授 二、速度分析二、速度分析将将 L3 L1+ L2 L4 对时间
44、求导得:对时间求导得: 用用 e2 点积点积(9)式,可得:式,可得: l33 3 e3t e2= l11 1 e1t e2 (10)(10)3 3 l3 sin (3 3 2 2 ) = 1 1 l1 sin (1 1 2 2 )3 3 = 1 1 l1 sin (1 1 2 2 ) / l3 sin (3 3 2 2 ) 用用 e3 点积点积(9)式,可得:式,可得: l22 2 e2t e3= l11 1 e1t e3 (11)(11)2 2 l2 sin (2 2 3 3 ) = 1 1 l1 sin (1 1 3 3 )2 2 =1 1 l1 sin (1 1 3 3 ) / l2s
45、in (2 23 3 ) l33 3 e3t = l11 1 e1t + l22 2 e2t (9)(9)天津工业大学专用 作者: 潘存云教授 作者:潘存云教授aCBt0aCBt三、加速度分析三、加速度分析 将(将(9)式对时间求导得:)式对时间求导得:acnactaBaCBn l33 32 2 e3n e2 + l33 3 e3t e2 = l11 12 2 e1n e2 + l22 22 2 e2n e2 上式中只有两个未知量上式中只有两个未知量- -3 32 2 l3 cos (3 3 2 2 ) - -3 3 l3 sin (3 3 2 2 ) =1 12 2 l1 cos (1 12
46、 2 )2 22 2 l2 3 3 =1 12 2 l1 cos (1 1 - - 2 2 ) + + 2 22 2 l2 - -3 32 2 l3 cos (3 3 - - 2 2 ) / l3 sin (3 3 2 2 ) 用用e3点积点积(12)式,整理后可得:式,整理后可得:2 2 =1 12 2 l1 cos (1 1 - - 3 3 ) + + 3 32 2 l3 -2 22 2 l2 cos (2 2 - - 3 3 ) / l2 sin (2 2 3 3 ) ,用,用e2点积点积(12)式,可得:式,可得:速度方程速度方程: l33 3 e3t = l11 1 e1t + l2
47、2 2 e2t (9) l33 32 2 e3n + l33 3 e3t = l11 12 2 e1n + l22 22 2 e2n + l22 2 e2t (12)天津工业大学专用 作者: 潘存云教授 DABC12341231x xy yabP二、矩阵法二、矩阵法思路:在在直直角角坐坐标标系系中中建建立立机机构构的的位位置置方方程程,然然后后将将位位置置方方程程对对时时间间求求一一阶阶导导数数,得得到到机机构构的的速速度度方方程程。求二阶导数便得到机构加速度方程。求二阶导数便得到机构加速度方程。1.位置分析位置分析改写成直角坐标的形式:改写成直角坐标的形式:L1+ L2 L3+ L4 ,或或
48、 L2L3L4 L1 已已知知图图示示四四杆杆机机构构的的各各构构件件尺尺寸寸和和 1,1,求求 : :2 2、 3 3、 2 2、 3 3、2 2、2 2 、x xp p、y yp p、v vp p 、 a ap p 。l2 cos2 2 l3 cos3 3 l4 l1 cos1 1l2 sin2 2 l3 sin3 3 l1 sin1 1(13)天津工业大学专用 作者: 潘存云教授 连杆上连杆上P点的坐标为:点的坐标为:xp l1 cos1 1 +a cos2 2 + b cos (90+2 2 ) yp l1 sin1 1 +a sin2 2 + b sin (90+2 2 )(14)2
49、.速度分析速度分析对时间求导得速度方程:对时间求导得速度方程:l2 sin2 2 2 2 l3 sin3 3 3 3 1 1 l1 sin1 1l2 cos2 2 2 2 l3 cos3 3 3 3 1 1 l1 cos1 1(15)l2 cos2 2 l3 cos3 3 l4 l1 cos1 1l2 sin2 2 l3 sin3 3 l1 sin1 1 (13)重写位置方程组将以下位置方程:将以下位置方程:天津工业大学专用 作者: 潘存云教授 从动件的从动件的角角速度列阵速度列阵原动件的位置原动件的位置参数矩阵参数矩阵B原动件的原动件的角角速度速度1 1从动件的位置从动件的位置参数矩阵参数矩
50、阵A写成矩阵形式:写成矩阵形式:- l2 sin2 2 l3 sin3 3 2 2 l1 sin1 1l2 cos2 2 - l3 cos3 3 3 3 -l1 cos1 1(16)1 1A =1 1 B 对对以下以下P点的位置方程求导:点的位置方程求导:xp l1 cos1 1 +a cos2 2 + b cos (90+2 2 ) yp l1 sin1 1 +a sin2 2 + b sin (90+2 2 )(14)得得P点的速度方程:点的速度方程:(17)vpxvpyxp -l1 sin1 1 -a sin2 2b sin (90+2 2 ) yp l1 cos1 1 a cos2 2
51、b cos (90+2 2 )1 12 2速速度度合合成成: vp v2px v2py pvtan-1(vpy / vpx )天津工业大学专用 作者: 潘存云教授 3.加速度分析加速度分析将(将(15)式对时间求导得以下矩阵方程:)式对时间求导得以下矩阵方程:l2 sin2 2 2 2 l3 sin3 3 3 3 1 1 l1 sin1 1l2 cos2 2 2 2 l3 cos3 3 3 3 1 1 l1 cos1 1(15)重写速度方程组AB=A+ 1 1对速度方程求导:对速度方程求导:l1 1 1 sin1 1l1 3 3 cos1 12 2 3 3- l2 sin2 2 l3 sin3
52、 3 l2 cos2 2 - l3 cos3 32 2 3 3- l2 2 2 cos2 2 l3 3 3 cos3 3- l 2 2 2 sin2 2 l3 3 3 sin3 3+ +1 1 (18)天津工业大学专用 作者: 潘存云教授 对对P点的速度方程求导:点的速度方程求导:(17)vpxvpyxp -l1 sin1 1 -a sin2 2b sin (90+2 2 ) yp l1 cos1 1 a cos2 2b cos (90+2 2 )1 12 2得得以下矩阵方程以下矩阵方程:加速度合成:加速度合成: ap a2px a2py patan-1(apy / apx )(19)apxa
53、pyxp -l1 sin1 1 -a sin2 2b sin (90+2 2 ) yp l1 cos1 1 a cos2 2b cos (90+2 2 )0 02 2l1 cos1 1 a cos2 2 + b cos (90+2 2 )-l1 sin1 1 -a sin2 2 + b sin (90+2 2 ) 2 22 2 3 32 2天津工业大学专用 作者: 潘存云教授 解解析析法法运运动动分分析析的的关关键键:正正确确建建立立机机构构的的位位置置方方程程。至于速度分析和加速度分析只不过是对位置方程作进一步的数学运算而已。本例所采用的分析方法同样适用复杂机构。速度方程的一般表达式:速度方
54、程的一般表达式:其中其中A 机构机构从动件的位置参数矩阵从动件的位置参数矩阵 机构机构从动件的角速度矩阵从动件的角速度矩阵 B 机构机构原原动件的位置参数矩阵动件的位置参数矩阵1 1机构机构原原动件的角速度动件的角速度加速度方程的一般表达式:加速度方程的一般表达式: 机构从动件的加角速度矩阵机构从动件的加角速度矩阵 A ddA/dtdt;A = -A+1 1 B A =1 1 B 缺缺点点: 是是对对于于每每种种机机构构都都要要作作运运动动学学模模型型的的推推导导,模模型的建立比较繁琐。型的建立比较繁琐。 B ddB/dtdt;天津工业大学专用 作者: 潘存云教授 作者:潘存云教授全部为转动副
55、全部为转动副类型类型 简简 图图 运动副运动副 矢量三角形中的已知量矢量三角形中的已知量AabR内:内:1个转动副个转动副外:外:2个移动移个移动移E内:内:1个移动副个移动副外:外:1转转1移移D内:内:1个转动副个转动副外:外:1转转1移移C内:内:1个移动副个移动副外:外:2个转动副个转动副B三、杆组分析法三、杆组分析法 原原理理:将将基基本本杆杆组组的的运运动动分分析析模模型型编编成成通通用用的的子子程程序序,根根据据机机构构的的组组成成情情况况依依次次调调用用杆杆组组分分析析子子程程序序,就就能能完完成成整整个个机机构构的的运运动动分析。分析。 a = R + b ? ? a = R
56、 + b ? ? 特点:特点:运动学模型是通用的,适用于任意复杂的平面连杆机构。运动学模型是通用的,适用于任意复杂的平面连杆机构。 a = R + b ? ? ? a b a = R + b ? ?a b a = R + b ? ?abRabRabRabR天津工业大学专用 作者: 潘存云教授 本章重点:本章重点: 1. 瞬心位置的确定(三心定律);瞬心位置的确定(三心定律); 2. 用瞬心法求构件的运动参数;用瞬心法求构件的运动参数; 3. 用矢量方程图解法作机构速度和加速度分析用矢量方程图解法作机构速度和加速度分析, 熟练掌握影象法及其应用;熟练掌握影象法及其应用;4. 用矢量方程解析法建立机构的运动学模型;用矢量方程解析法建立机构的运动学模型;天津工业大学专用 作者: 潘存云教授