电磁场与电磁波第三版之3静电场分析

上传人:壹****1 文档编号:592272214 上传时间:2024-09-20 格式:PPT 页数:30 大小:839.52KB
返回 下载 相关 举报
电磁场与电磁波第三版之3静电场分析_第1页
第1页 / 共30页
电磁场与电磁波第三版之3静电场分析_第2页
第2页 / 共30页
电磁场与电磁波第三版之3静电场分析_第3页
第3页 / 共30页
电磁场与电磁波第三版之3静电场分析_第4页
第4页 / 共30页
电磁场与电磁波第三版之3静电场分析_第5页
第5页 / 共30页
点击查看更多>>
资源描述

《电磁场与电磁波第三版之3静电场分析》由会员分享,可在线阅读,更多相关《电磁场与电磁波第三版之3静电场分析(30页珍藏版)》请在金锄头文库上搜索。

1、第第 3 3 章章 静电场分析静电场分析 以矢量分析和亥姆霍兹定理为基础,讨论静电场、恒定电场的特以矢量分析和亥姆霍兹定理为基础,讨论静电场、恒定电场的特性和求解方法。性和求解方法。 首先建立真空、电介质和导电媒质中电场的基本方程;引入电位函首先建立真空、电介质和导电媒质中电场的基本方程;引入电位函数数; ; 导出电位满足的泊松方程和拉普拉斯方程;确立电场的边界条件导出电位满足的泊松方程和拉普拉斯方程;确立电场的边界条件 。 最后讨论电容的计算,电场能量的计算。最后讨论电容的计算,电场能量的计算。3.1 3.1 静电场分析的基本变量静电场分析的基本变量3.2 3.2 真空中静电场的基本方程真空

2、中静电场的基本方程3.3 3.3 电位函数电位函数3.4 3.4 泊松方程泊松方程 拉普拉斯方程拉普拉斯方程3.5 3.5 点电荷的点电荷的 函数表示函数表示 格林函数格林函数3.6 3.6 格林定理格林定理 泊松方程的积分公式泊松方程的积分公式3.7 3.7 惟一性定理惟一性定理3.8 3.8 电介质的极化电介质的极化 极化强度极化强度3.9 3.9 介质中的高斯定律介质中的高斯定律 边界条件边界条件3.10 3.10 恒定电场的基本方程恒定电场的基本方程 边界条件边界条件3.11 3.11 导体系统的电容导体系统的电容3.12 3.12 电场能量电场能量 静电力静电力3.1 3.1 静电场

3、分析的基本变量静电场分析的基本变量 关系式关系式 称为真空的电特性方程或本构关系称为真空的电特性方程或本构关系 静电场的源变量是电荷静电场的源变量是电荷 第第2 2章中已由库仑定律引入了电荷章中已由库仑定律引入了电荷 产生的电场强度产生的电场强度 任意电荷分布产生的电场强度任意电荷分布产生的电场强度 定义任意电荷分布产生的电位移矢量定义任意电荷分布产生的电位移矢量 表示闭合曲面表示闭合曲面S 对点电荷所在点张的对点电荷所在点张的立体角立体角3.2 3.2 真空中静电场的基本方程真空中静电场的基本方程对任意闭合曲面对任意闭合曲面S 积分积分一、电场的散度一、电场的散度设空间存在一点电荷设空间存在

4、一点电荷 ,则,则 点的电位移点的电位移所以所以在闭合面内在闭合面内在闭合面外在闭合面外若闭合面内有若闭合面内有N 个点电荷个点电荷若闭合面内的电荷分布为若闭合面内的电荷分布为真空中的高斯定律真空中的高斯定律散度定理于是电场的散度方程于是电场的散度方程(高斯定理的微分形式)高斯定理的微分形式)二、电场的旋度二、电场的旋度真空中电场的基本方程真空中电场的基本方程在点电荷在点电荷 的电场中,任取一条曲线的电场中,任取一条曲线 ,积分,积分当积分路径是闭合曲线,当积分路径是闭合曲线,A、B 两点重合,得两点重合,得斯托克斯定理当当当当 例例 3.2.1 3.2.1 电荷按体密度电荷按体密度 分布于半

5、径为分布于半径为a 的球形区域内,的球形区域内, 其中其中 为常数。试计算球内外的电通密度(电位移矢量)。(教材例为常数。试计算球内外的电通密度(电位移矢量)。(教材例3.2.1)3.2.1)解解: : 电场具有球对称性,电场具有球对称性,于是于是于是于是直角坐标系3.3 3.3 电位函数电位函数由由 , 称为静电场的标量位函数,又称电位函数称为静电场的标量位函数,又称电位函数 由此可求得电位的微分由此可求得电位的微分在任意方向上的分量在任意方向上的分量 空间空间A、B 两点的电位差两点的电位差 若选取若选取 为电位参(即为电位参(即 ),), 则任意点则任意点 的电位为的电位为 对于点电荷的

6、电场,其电位为对于点电荷的电场,其电位为 体电荷体电荷 、面电荷、面电荷 、线电荷、线电荷 产生的电位分别为产生的电位分别为若取若取 处的电位为零,则处的电位为零,则 解:取如图所示坐标系,场点解:取如图所示坐标系,场点 的电位等于两个点电荷电位的叠加的电位等于两个点电荷电位的叠加 而而当当因此因此由于由于得电偶极子的电位得电偶极子的电位电偶极子的电场强度电偶极子的电场强度例例3.3.1 3.3.1 求电偶极子求电偶极子 的电位的电位( (教材例教材例3.3.1)3.3.1)。3.4 3.4 泊松方程泊松方程 拉普拉斯方程拉普拉斯方程由由在直角坐标系中在直角坐标系中电电位位的的泊泊松松方方程程

7、若空间电荷分布为零,则有若空间电荷分布为零,则有电位满足的拉普拉斯方程电位满足的拉普拉斯方程 例例3.4.13.4.1 半径为半径为a 的带电导体球,其电位为的带电导体球,其电位为U(无穷远处电位为零),试计无穷远处电位为零),试计算球外空间的电位。算球外空间的电位。解:解: 球外空间的电位满足拉氏方程球外空间的电位满足拉氏方程 电位满足的边界条件电位满足的边界条件由题意可知电位及电场具有球对称性由题意可知电位及电场具有球对称性在球坐标系下在球坐标系下直接积分因此因此3.5 3.5 点电荷的点电荷的 函数表示函数表示 格林函数格林函数 为表示点电荷的体密度,引入为表示点电荷的体密度,引入 函数

8、函数 于是位于于是位于 处的点电荷处的点电荷q 的体密度为的体密度为 单位点电荷产生的电位满足的泊松方程单位点电荷产生的电位满足的泊松方程 定义格林函数定义格林函数3.6 3.6 格林定理格林定理 泊松方程的积分公式泊松方程的积分公式格林恒等式是矢量分析中的重要恒等式。格林恒等式是矢量分析中的重要恒等式。由由散度定理散度定理设设而而得得格林第一恒等式格林第一恒等式同理,若设同理,若设格林第一恒等式表示为格林第一恒等式表示为格林第二恒等式格林第二恒等式利用格林函数的性质和格林第二恒等式可得到有界空间中的泊松方程的积分解利用格林函数的性质和格林第二恒等式可得到有界空间中的泊松方程的积分解以上公式说

9、明,只要知道区域以上公式说明,只要知道区域 内的电荷分布内的电荷分布 以及区域边界面以及区域边界面 上的电上的电位位 和电位梯度和电位梯度 值,就可求出区域内的电位分布。值,就可求出区域内的电位分布。3.7 3.7 惟一性定理惟一性定理 静电场的边值问题是在给定边界条件下求泊松方程或拉普拉斯方程的解。静电场的边值问题是在给定边界条件下求泊松方程或拉普拉斯方程的解。 可以证明在每一类边界条件下泊松方程或拉普拉斯方程的解都是惟一的。这就可以证明在每一类边界条件下泊松方程或拉普拉斯方程的解都是惟一的。这就 是边值问题的是边值问题的惟一性定理惟一性定理 实际边值问题的边界条件分为三类实际边值问题的边界

10、条件分为三类第一类边界条件第一类边界条件第二类边界条件第二类边界条件第三类边界条件第三类边界条件 惟一性定理的意义:是间接求解边值问题的理论依据。惟一性定理的意义:是间接求解边值问题的理论依据。3.8 3.8 电介质的极化电介质的极化 极化强度极化强度 当电场中放入电介质时,电介质在电场的作用下发生极化现象,介质中因极化出现当电场中放入电介质时,电介质在电场的作用下发生极化现象,介质中因极化出现许多电偶极矩,电偶极矩又要产生电场,叠加于原来电场之上,使电场发生变化。许多电偶极矩,电偶极矩又要产生电场,叠加于原来电场之上,使电场发生变化。 极化强度:极化强度:用用p 表示极化的程度,即表示极化的

11、程度,即式中:式中:N 为单位体积内被极化的分子数为单位体积内被极化的分子数 极化体电荷极化体电荷 由于电场的作用使电偶极子的定向排列,介质内部出现极化体电荷,介质表面由于电场的作用使电偶极子的定向排列,介质内部出现极化体电荷,介质表面出现极化面电荷。出现极化面电荷。 极化面电荷极化面电荷 ( 为介质表面外法线方向的单位矢量)为介质表面外法线方向的单位矢量)3.9 3.9 介质中高斯定理介质中高斯定理 边界条件边界条件 引入极化电荷后,介质的极化效应由极化电荷表征,即空间的电场由自由电荷和引入极化电荷后,介质的极化效应由极化电荷表征,即空间的电场由自由电荷和极化电荷产生。而极化电荷和自由电荷的

12、实质相同,则极化电荷产生。而极化电荷和自由电荷的实质相同,则 由实验证明,由实验证明,P 和和 E 之间有一定之间有一定的线性关系,即的线性关系,即得得(为(为电介质中的电介质中的本构关系本构关系)介质的介电常数介质的介电常数介质的相对介电常数介质的相对介电常数极化率极化率而而得得令令(介质中的介质中的电位移矢量电位移矢量)于是介质中的高斯定理于是介质中的高斯定理微分形式微分形式式中式中 均为自由电荷均为自由电荷 小圆柱侧面积, h为无穷小量,该面积趋于零一、电位移矢量一、电位移矢量D D 的边界条件的边界条件n nh 将电场基本方程将电场基本方程 用于所用于所作的圆柱形表面。作的圆柱形表面。

13、 设两种不同的电介质设两种不同的电介质 ,其分界面的法线方向为,其分界面的法线方向为n,在分界面上作一小圆柱形表在分界面上作一小圆柱形表面,两底面分别位于介质两侧,底面积为面,两底面分别位于介质两侧,底面积为 ,h 为无穷小量。为无穷小量。方程左边方程左边电位移矢量电位移矢量D D 的边界条件的边界条件用矢量表示用矢量表示方程右边方程右边为分界面上的自由电荷面密度为分界面上的自由电荷面密度二、电场强度二、电场强度E E 的边界条件的边界条件(其中其中 为回路所为回路所围面积的法线方向)围面积的法线方向) 因为回路是任意的,其所围面因为回路是任意的,其所围面的法向也是任意的,因而有的法向也是任意

14、的,因而有电场强度电场强度E E的边界条件:的边界条件:或表示为或表示为 在分界面上作一小的矩形回路,其两边在分界面上作一小的矩形回路,其两边 分居于分界面两侧,而高分居于分界面两侧,而高 。将。将方程方程 用于此回路用于此回路介质分界面两侧电场强度的介质分界面两侧电场强度的切向分量切向分量连续连续对于电位对于电位 由由由由 例例 3.9.13.9.1 半径分别为半径分别为a和和b 的同轴线,外加电压的同轴线,外加电压U。圆柱电极间在图示圆柱电极间在图示 角部分角部分填充介电常数为填充介电常数为 的介质,其余部分为空气,求内外导体间的电场。(教材例的介质,其余部分为空气,求内外导体间的电场。(

15、教材例3.9.2)3.9.2) 解:问题具有轴对称性,选用柱坐标系,解:问题具有轴对称性,选用柱坐标系,待求函数待求函数 , 在在圆柱坐标系下圆柱坐标系下于是电位于是电位 满足的拉普拉斯方程满足的拉普拉斯方程其通解为其通解为同理同理其中系数其中系数A、B、C、D可由边界条件确定可由边界条件确定边界条件边界条件于是于是由此可知由此可知内导体表面单位长度的电荷内导体表面单位长度的电荷由由内导体和区域内导体和区域1 1的边界条件的边界条件由由内导体和区域内导体和区域2 2的边界条件的边界条件得得同轴线单位长度上的电容同轴线单位长度上的电容3.10 3.10 恒定电场的基本方程恒定电场的基本方程 边界

16、条件边界条件 恒定电流空间存在的电场,称为恒定电场。恒定电流空间存在的电场,称为恒定电场。 恒定电场中的二个基本变量为电流密度恒定电场中的二个基本变量为电流密度 和电场强度和电场强度 。 描述恒定电场基本特性的第一个方程是电流连续性方程,即描述恒定电场基本特性的第一个方程是电流连续性方程,即或或 电流恒定时,电荷分布不随时间变化,恒定电场同静电场具有相同的性质。因电流恒定时,电荷分布不随时间变化,恒定电场同静电场具有相同的性质。因此描述恒定电场基本特性的第二个方程为此描述恒定电场基本特性的第二个方程为或或 实验证明,导电媒质中电流密度与电场强度成正比,即实验证明,导电媒质中电流密度与电场强度成

17、正比,即 称为导电媒质的电导率。称为导电媒质的电导率。 要想在导电媒质中维持恒定电流,必须依靠非静电力将要想在导电媒质中维持恒定电流,必须依靠非静电力将B极板的正电荷极板的正电荷q抵抗电抵抗电场力搬到场力搬到A极板。极板。这种提供非静电力将其它形式的能量转为电能装置称为电源。这种提供非静电力将其它形式的能量转为电能装置称为电源。因此因此 Ee 是非保守场。是非保守场。 设局外场强为设局外场强为设局外场强为设局外场强为 ,则电源电动势为,则电源电动势为电源电动势与有无外电路无关,它是表示电源本身的特征量电源电动势与有无外电路无关,它是表示电源本身的特征量。则则与静电场的讨论类似,由与静电场的讨论

18、类似,由 可引入恒定电场的电位函数可引入恒定电场的电位函数 一、恒定电场的电位一、恒定电场的电位由由二、恒定电场的边界条件二、恒定电场的边界条件若用电位表示若用电位表示 将恒定电场的基本方程将恒定电场的基本方程 、 分别用于二种不同导电媒分别用于二种不同导电媒 质的分界面上,与推导静电场边界条件方法类似,可导出恒定电场的边界条件。质的分界面上,与推导静电场边界条件方法类似,可导出恒定电场的边界条件。 解:设同轴线内外导体是解:设同轴线内外导体是理想导体,则导体内理想导体,则导体内 ,导体表面是导体表面是等位面等位面,于是漏电,于是漏电介质中的介质中的电位只是径向电位只是径向r 的函数的函数,柱

19、坐标系下拉普拉斯方程为柱坐标系下拉普拉斯方程为其通解其通解边界条件为边界条件为得得导电媒质中的电场强度导电媒质中的电场强度电流密度电流密度单位长度上的漏电流单位长度上的漏电流单位长度上的漏电导单位长度上的漏电导 例例 3.10.13.10.1 同轴线内外导体半径分别为同轴线内外导体半径分别为a和和b,填充的介质填充的介质 ,具有漏电,具有漏电现象。同轴线外加电源电压为现象。同轴线外加电源电压为U,求漏电介质内的求漏电介质内的 和单位长度的漏电电和单位长度的漏电电导。(教材例导。(教材例3.10.1)3.10.1) 例例 3.10.23.10.2 一个有两层介质的平行板电容器,其参数分别为一个有

20、两层介质的平行板电容器,其参数分别为 和和 外外加电压加电压U,介质分界面上的自由电荷密度。介质分界面上的自由电荷密度。( (教材例教材例3.10.2)3.10.2) 解:设电容器极板为理想导体,故解:设电容器极板为理想导体,故极板是等位面,电流沿极板是等位面,电流沿z方向。方向。由边界条件由边界条件得得相应的电场相应的电场外加电压外加电压U 等于等于得得于是于是由边界条件由边界条件上极板上极板 的自由电荷面密度的自由电荷面密度下极板下极板 的自由电荷面密度的自由电荷面密度介质分界面介质分界面 上的自由电荷上的自由电荷 3.11 3.11 导体系统的电容导体系统的电容 N 个导体组成的导体系统

21、,其中第个导体组成的导体系统,其中第i个导体的电位与自身的电荷和其他导体的电个导体的电位与自身的电荷和其他导体的电荷关系为荷关系为 其中其中 为常数,称为为常数,称为电位系数电位系数,与系统中所有导体的形状、位置及周围介质,与系统中所有导体的形状、位置及周围介质有关。有关。(共有共有 N 个方程)个方程) 由以上由以上N 个方程可解出个方程可解出(共有共有 N 个方程)个方程) 当当 时时 称为称为电容系数电容系数, 时时 称为称为感应系数感应系数,且,且 引入引入,方程,方程 可写为可写为与导体i的电位成正比与导体i、j的电位差成正比其比值其比值3.12 3.12 电场能量电场能量 静电力静

22、电力 电场能量来源于建立电荷系统过程中外界提供的能量。电场能量来源于建立电荷系统过程中外界提供的能量。 设系统完全建立时,最终的电荷分布为设系统完全建立时,最终的电荷分布为 ,电位为,电位为 。 设充电过程中,各点的电荷密度按其终值的同一比例因子设充电过程中,各点的电荷密度按其终值的同一比例因子 增加,则各点的电增加,则各点的电位也将按同一因子增加。即在某一时刻电荷分布为位也将按同一因子增加。即在某一时刻电荷分布为 时,其电位分布为时,其电位分布为 。 的变化为的变化为 。 整个充电过程外界对整个系统提供的总能量整个充电过程外界对整个系统提供的总能量 用场变量表示该能量为用场变量表示该能量为

23、单位体积的能量,称为能量密度单位体积的能量,称为能量密度 对某一体积元对某一体积元 , 变为变为 时(此时电位为时(此时电位为 电荷增加电荷增加 )外界提供的能量外界提供的能量 例例 3.12.13.12.1 如例如例 3.9.2 3.9.2 中部分填充介质的同轴线,求介质与空气中单位长度内中部分填充介质的同轴线,求介质与空气中单位长度内的电场能量。(教材例的电场能量。(教材例3.12.1) 3.12.1) 解:设同轴线内导体电位解:设同轴线内导体电位 外导体电位外导体电位 ,则同轴线内外导体间单位长度的能量则同轴线内外导体间单位长度的能量 由例由例 3.9.2 3.9.2 可知,内导体表面单

24、位长度的电荷可知,内导体表面单位长度的电荷所以所以 由例由例 3.9.2 3.9.2 可知,介质和空气可知,介质和空气中的电场强度相等中的电场强度相等于是介质中的能量密度、能量于是介质中的能量密度、能量空气中的能量密度空气中的能量密度、能量、能量2、静电力静电力 已已知知带带电电体体的的电电荷荷分分布布,原原则则上上,根根据据库库仑仑定定律律可可以以计计算算带带电电体体电电荷荷之之间间的的电电场场力力。但但对对于于电电荷荷分分布布复复杂杂的的带带电电系系统统,根根据据库库仑仑定定律律计计算算电电场场力力往往往往是是非非常常困困难难的的,因因此此通通常常采采用用虚虚位位移移法法来来计计算静电力。

25、算静电力。虚位移法:虚位移法:假设第假设第i个带电个带电导体在电场力导体在电场力Fi的作用下发生位移的作用下发生位移dgi,则则电场力做功电场力做功dAFidgi,系统的静电能量改变为系统的静电能量改变为dWe。根据能量守根据能量守恒定律,该系统的功能关系为恒定律,该系统的功能关系为其中其中dWS是与各带电体相连接的外电源所提供的能量。是与各带电体相连接的外电源所提供的能量。具体计算中,可假定各带电导体的电位不变,或假定各带电导体的具体计算中,可假定各带电导体的电位不变,或假定各带电导体的电荷不变。电荷不变。1.) 各带电导体的电位不变各带电导体的电位不变此时,各带电导体应分别与外电压源连接,外电压源向系统提供的此时,各带电导体应分别与外电压源连接,外电压源向系统提供的能量能量系统所改变的静电能量系统所改变的静电能量即即2)各带电导体的电荷不变)各带电导体的电荷不变此时,所有带电体都不和外电源相连接,则此时,所有带电体都不和外电源相连接,则 dWS0,因此因此式中的式中的“”号表示电场力做功是靠减少系统的静能量来实现的。号表示电场力做功是靠减少系统的静能量来实现的。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号