《分子生物学张海红8 章》由会员分享,可在线阅读,更多相关《分子生物学张海红8 章(92页珍藏版)》请在金锄头文库上搜索。
1、 第第7章内容回顾章内容回顾1. 染色体、染色质和核小体以及染色体的结构特点。染色体、染色质和核小体以及染色体的结构特点。2. DNA包装成染色体的重要性是什么?包装成染色体的重要性是什么?3. 基因组大小、基因数量和基因密度的概念。基因组大小、基因数量和基因密度的概念。4. 在真核细胞中,影响基因密度大小的因素什么?在真核细胞中,影响基因密度大小的因素什么?5. DNA重复序列的特点和分布。重复序列的特点和分布。6. 染色体中的哪些元件不参与基因的表达?染色体中的哪些元件不参与基因的表达?7. 核小体的组成,组蛋白的结构特点。核小体的组成,组蛋白的结构特点。8. 能够调节染色质结构的因素有哪
2、些?能够调节染色质结构的因素有哪些? 9. 组蛋白组蛋白N-端尾巴的作用有哪些?端尾巴的作用有哪些?CHAPTER 8:The replication of DNAThe Structure of DNACHAPTER 8In 1957, M. Meselson and F. W. Stahl successfully obtained the experimental proof for the semi-conservative replication of DNA. They did this by inventing a new technique called Density Gra
3、dient Centrifugation. Their paper was published in 1958 and ever since, the experiment has often been referred to as: one of the most beautiful experiments in biology. How It Began:CHAPTER 8Meselson and Stahl Experiment M. MeselsonM. MeselsonF.W. StahlF.W. StahlMeselson及及Stahl:提出半保留模型:提出半保留模型M. Mese
4、lson and F.W. Stahl. 1958. The replication of DNA in E. coli. Proc. Natl. Acad. Sci. U.S.A. 44: 671-682. semi conservation replicationCHAPTER 8Meselson and Stahl.swfCHAPTER 8CsCl (氯化铯氯化铯)密度梯密度梯度离心分离度离心分离DNASemi-Conservation Replication视频视频Complications of DNA replicationEnzymesThe Topological Proble
5、mDirection problem: semi-discontinuouslyPrimingCHAPTER 8T1: The Chemistry of DNA SynthesisT2: The Mechanism of DNA PolymeraseT3: The Replication Fork T4: The Specialization of DNA Polymerases T5: DNA Synthesis at the Replication Fork T6: Initiation of DNA ReplicationT7: Binding and UnwindingT8: Fini
6、shing ReplicationLecture TopicsGeneralDetailedCHAPTER 8The first part describes the basic chemistry of DNA synthesis and the function of the DNA polymerase.CHAPTER 8CHAPTER 8T1: The Chemistry of DNADNA synthesis requires deoxynucleoside triphosphates (dNTP) and a primer: template junction.DNA is syn
7、thesized by extending the 3 end of the primer.Hydrolysis of pyrophosphate (PPi) is the driving force for DNA synthesis.(1) DNA Synthesis Requires Deoxynucleoside Triphosphates and a Primer:Template junction CHAPTER 8Figure 8-1 Substrates required for DNA synthesis.dGTP. dCTP. dATP, or dTTPCHAPTER 8(
8、2) DNA Is Synthesized by Extending the 3 End of the PrimerFigure 8-2 Diagram of the mechanism of DNA synthesis.53DNA的结构式的结构式CHAPTER 8T2: The Mechanism of DNA Polymerase1. DNA聚合酶以聚合酶以脱氧核苷酸三磷酸脱氧核苷酸三磷酸(dNTPs)为)为底物底物,沿模板的,沿模板的35方方向,将对应的脱氧核苷酸连接到新生向,将对应的脱氧核苷酸连接到新生DNA链的链的3端,端,使新生链沿使新生链沿53方向方向延长延长。DNA Polym
9、erase (Pol)2. 新链与原有的模板链新链与原有的模板链序列序列互补互补,亦与,亦与模板链的原配对链序列一致。模板链的原配对链序列一致。3. DNA聚合酶均以聚合酶均以53方向合成方向合成DNA,且均不能,且均不能“重新重新”(de novo)合成)合成DNA,而只能将脱氧核苷酸加到已有的,而只能将脱氧核苷酸加到已有的RNA或或DNA的的3端端羟基羟基上。上。 (1) DNA Pol use a single active site to catalyze DNA synthesis A single site to catalyze the addition of any of th
10、e four dNTPs. Recognition of different dNTP by monitoring the ability of incoming dNTP in forming A-T and G-C base pairs; incorrect base pair dramatically lowers the rate of catalysis.Distinguish between rNTP and dNTP by steric exclusion of rNTPs from the active site.CHAPTER 8CHAPTER 8Figure 8-3 Cor
11、rectly paired bases are required for DNA-Pol-catalyzed nucleotide addition.CHAPTER 8Figure 8-4 Schematic illustration of the steric constraints preventing DNA Pol from using rNTP precurson.Distinguish between rNTP and dNTP by steric exclusion of rNTPs from the active site.In DNA Pol, the nucleotide
12、binding pocket is too small to allow the presence of a 2-OH on the incoming nucleotide. This space is occupied by two amino acids (discriminator amino acids辨识氨基酸辨识氨基酸) that make van der Waals contacts with the sugar ring.CHAPTER 8(2) DNA Pol Resemble a That Grips the Primer:Template Junction Schemat
13、ic of DNA Pol bound to a primer: template junctionA similar view of the T7 DNA pol bound to DNAFigure 8-5 Three-dimensional structure of DNA Pol resembles a right hand.CHAPTER 8Figure 8-8 Illustration of the path of the template DNA through the DNA Pol.ThumbFingersPalmCHAPTER 8ThumbFingersPalm维持引物以及
14、活性部位的维持引物以及活性部位的正确位置;正确位置;帮助维持帮助维持DNA聚合酶与其聚合酶与其底物之间的紧密连接。底物之间的紧密连接。一旦引入的一旦引入的dNTP与模板之与模板之间形成正确的碱基配对,手间形成正确的碱基配对,手指域即发生闭合式移动,从指域即发生闭合式移动,从而包围住而包围住dNTP,使引入的,使引入的核苷酸与催化的金属离子密核苷酸与催化的金属离子密切接触,促进催化反应;另切接触,促进催化反应;另外,手指域的移动使模板的外,手指域的移动使模板的磷酸二酯键骨架在活性部位磷酸二酯键骨架在活性部位后立即产生弯曲,使催化位后立即产生弯曲,使催化位点上引物后第一个模板碱基点上引物后第一个模
15、板碱基暴露,便于与下一个配对碱暴露,便于与下一个配对碱基结合。基结合。手掌域不仅可以催化手掌域不仅可以催化dNTP的添加反应,还可以去除错配的的添加反应,还可以去除错配的dNTP;手掌域可以;手掌域可以结合结合2个二价金属离子,从而改变正确碱基配对的个二价金属离子,从而改变正确碱基配对的dNTP和引物和引物3-OH周围的化周围的化学环境;手掌域还负责检查最新加入的核苷酸碱基配对的准确性。学环境;手掌域还负责检查最新加入的核苷酸碱基配对的准确性。(3) DNA Pol are processive enzymes DNA聚合酶是一种延伸酶。聚合酶是一种延伸酶。1)延伸能力是酶处理多聚体底物时的一
16、种特性。)延伸能力是酶处理多聚体底物时的一种特性。2)DNA聚合酶的延伸能力定义为每次酶与引物模板接头聚合酶的延伸能力定义为每次酶与引物模板接头结合时所添加核苷酸的平均数结合时所添加核苷酸的平均数。每个。每个DNA聚合酶都有其聚合酶都有其特征性的延伸能力,范围从每次结合时的几个到特征性的延伸能力,范围从每次结合时的几个到5000多多个碱基。个碱基。DNA合成的速率与聚合酶的延伸能力密切相关。因为,合成的速率与聚合酶的延伸能力密切相关。因为,聚合酶与引物聚合酶与引物-模板接头的最初结合是限速步骤。模板接头的最初结合是限速步骤。 CHAPTER 8The thumb helps to mainta
17、in a strong association between the DNA polymerase and its substrate.DNA polymerases are processive enzymes; thus the rate of DNA synthesis is dramatically increased (1000 bp/sec).CHAPTER 8Figure 8-9聚合酶与引物聚合酶与引物-模板接头的最初模板接头的最初结合是限速步骤(结合是限速步骤(1sec)(4) Exonucleases proofread newly synthesized DNA The
18、occasional flicking of the bases into “wrong” tautomeric form results in incorrect base pair and mis-incorporation of dNTP. (10-5 mistake) The mismatched dNTP is removed by proofreading exonuclease, a part of the DNA polymerase.How does the exonucleases work? Kinetic selectivityCHAPTER 8Figure 8-10C
19、HAPTER 8Proofreading exonucleases removes bases from the 3 end of mismatched DNA. proofreading_function.swfT1: The Chemistry of DNA SynthesisT2: The Mechanism of DNA PolymeraseT3: The Replication Fork T4: The Specialization of DNA Polymerases T5: DNA Synthesis at the Replication Fork T6: Initiation
20、of DNA ReplicationT7: Binding and UnwindingT8: Finishing ReplicationLecture TopicsGeneralDetailedCHAPTER 8The second part describes how the synthesis of DNA occurs in the context of an intact chromosome at replication forks. CHAPTER 8T3: The replication forkThe junction between the newly separated t
21、emplate strands and the unreplicated duplex DNA. CHAPTER 8新分开的模板链与未复制的双链新分开的模板链与未复制的双链DNA之间的连接区称为复制叉。之间的连接区称为复制叉。CHAPTER 8(1) Both strands of DNA are synthesized together at the replication fork.Figure 8-11Leading strand(前导链前导链)Lagging strand(后随链后随链)Okazaki fragment(1001000bp)Replication fork(2) DNA
22、 helicases unwind the double helix in advance of the replication forkCHAPTER 8Figure 8-13DNA解旋酶解旋酶分离双螺旋的两条链。DNA解旋酶具有5-3极性。即在后随链上。CHAPTER 8(3) Single-stranded binding proteins (SSBs) stabilize single-stranded DNACooperative bindingSequence-independent manner(electrostatic interactions) Figure 8-15单链单
23、链DNA结合蛋白结合蛋白(4) The initiation of a new strand of DNA require an RNA primerPrimase is a specialized RNA polymerase dedicated to making short RNA primers on an ssDNA template. Do not require specific DNA sequence.DNA Pol can extend both RNA and DNA primers annealed to DNA template CHAPTER 8(5) RNA pr
24、imers must be removed to complete DNA replicationA joint efforts of RNase H, DNA Pol & DNA ligase Figure 8-12 Removal of RNA promers from newly synthesized DNA.CHAPTER 8CHAPTER 8(6) Topoisomerase removes supercoils produced by DNA unwinding at the replication forkFigure 8-16CHAPTER 8(7) Replication
25、fork enzymes extend the range of DNA polymerase DNA Pol can not accomplish replication without the help of other enzymes T4: The Specilization of DNA PolymerasesCHAPTER 8Each organism has a distinct set of different DNA PolsDifferent organisms have different DNA PolsDNA Pol III holoenzyme: a protein
26、 complex responsible for E. coli genome replicationDNA Pol I: removes RNA primers in E. coli Eukaryotic cells have multiple DNA Pol. Three are essential to duplicate the genome: DNA Pol d d, DNA Pol e e and DNA Pol a a/primase. (What are their functions?)Pol switching in Eukaryotes: the process of r
27、eplacing DNA Pol a a/primase with DNA Pol d d or DNA Pol e e. CHAPTER 8CHAPTER 8(1) DNA polymerases are specialized for different roles in the cellCHAPTER 8DNA Pols of eukaryotes?Figure 8-17 DNA polymerase switching during eukaryotic DNA replicationCHAPTER 8the process of replacing DNA Pola a/primas
28、e with DNA Pold d or DNA Pole e. 50100bp10010000bpCHAPTER 8(2) Sliding clamps dramatically increase DNA Pol processivityEncircle the newly synthesized double-stranded DNA and the Pol associated with the primer: template junction.Ensures the rapid rebinding of DNA Pol to the same primer: template jun
29、ction, and thus increases the processivity of Pol.Eukaryotic sliding DNA clamp is PCNACHAPTER 8Figure 8-18 Structure of a sliding DNA clamp.Figure 8-19 Sliding DNA Clamps Increase the Processivity of associated DNA Pols.CHAPTER 8CHAPTER 8Figure 8-20 Three-dimensional structure of sliding DNA clamps
30、isolated from different organism.Sliding DNA clamps are found across all organism and share a similar structuretwo copies of b proteintrimer of the PCNA proteintrimer of the gp45 proteinE.coli:EukaryoticT4 phageCHAPTER 8(3) Sliding clamps are opened and placed on DNA by clamp loadersClamp loader is
31、a special class of protein complex catalyzes the opening and placement of sliding clamps on the DNA, such a process occurs anytime a primer-template junction is present.Sliding clamps are only removed from the DNA once all the associated enzymes complete their function.CHAPTER 8ATP control of slidin
32、g DNA clamp loadingSliding clamp loaderCHAPTER 8At the replication, the leading strand and lagging strand are synthesized simultaneously. To coordinate the replication of both strands, multiple DNA Pols function at the replication fork. DNA Pol III holoenzyme is such an example.T5: DNA synthesis at
33、the replication forkCHAPTER 8Composition of the DNA Pol III holoenzymeFigure 8-21CHAPTER 8Figure 8-22* Trombone modelCHAPTER 8CHAPTER 8CHAPTER 8dna_replication.swf7. RNase H(切除切除RNA引物,引物,DNA Pol I,DNA ligase).(Pol III )Interactions between replication fork proteins form the E. coli replisomeReplisom
34、e is established by protein-protein interactions1. DNA helicase & DNA Pol III holoenzyme, this interaction is mediated by the clamp loader and stimulates the activity of the helicase (10-fold)2. DNA helicase & primase, which is relatively week and strongly stimulates the primase function (1000-fold)
35、. This interaction is important for regulation the length of Okazaki fragments.CHAPTER 8DNA Pol III holoenzyme, helicase and primase interact with each other to form replisome, a finely tuned factory for DNA synthesis with the activity of each protein is highly coordinated.CHAPTER 8Interactions betw
36、een replication fork proteins from the E. coli replisomeCHAPTER 8Figure 8-23 Binding of the DNA helicase to DNA pol III holoenzyme stimulates the rate of DNA strand separation.视频视频T1: The Chemistry of DNA SynthesisT2: The Mechanism of DNA PolymeraseT3: The Replication Fork T4: The Specialization of
37、DNA Polymerases T5: DNA Synthesis at the Replication Fork T6: Initiation of DNA ReplicationT7: Binding and UnwindingT8: Finishing ReplicationLecture TopicsGeneralDetailedCHAPTER 8The third part focuses on the initiation and termination of DNA replication. Note that DNA replication is tightly control
38、led in all cells and initiation is the step for regulation. CHAPTER 8思考下列概念之间的关系:思考下列概念之间的关系:复制子(复制子(replicon)复制器(复制器(replicator)复制起始位点(复制起始位点( origin of replication )起始子(起始子(initiator)起始位点识别复合体(起始位点识别复合体(origin recognition complex,ORC)复制体(复制体(replisome)CHAPTER 8T6: Initiation of DNA replication(1)
39、Specific genomic DNA sequences direct the initiation of DNA replicationOrigins of replication, the sites at which DNA unwinding and initiation of replication occur. Replicator: the entire site of cis-acting DNA sequences sufficient to direct the initiation of DNA replicationInitiator protein: specif
40、ically recognizes a DNA element in the replicator and activates the initiation of replicationFigure 8-24 the replication model.CHAPTER 8CHAPTER 8The identification of origins of replicationBox 8-5 Figure 1 Genetic identification of replicators (origins)CHAPTER 8(2) Replicator sequences include initi
41、ator binding sites and easily unwound DNAFigure 8-25 Structure of replication.起始子结合位点:绿色起始子结合位点:绿色1)含有起始子蛋白质结合的位点,此位点是组装复制起始机器的核心;2)含有一段富含AT的DNA,此段DNA容易解旋但并不自发进行。在复制器上,DNA的解旋是由复制起始蛋白控制的,这些蛋白被严格调控。如在E.Coli中,复制器为“oriC”。9核苷酸单位的基序是起始子DnaA的结合位点,在oriC”上重复5次,13核苷酸单位的基序重复3次,是起始时单链DNA形成的起始位点。 促进促进DNA解旋的元件:蓝色
42、解旋的元件:蓝色第一段第一段DNA合成的位点:红色合成的位点:红色T7: Binding and Unwinding: origin selection and activation by the initiator proteinCHAPTER 8Three different functions of initiator protein: (1) binds to replicator, (2) distorts/unwinds a region of DNA, (3) interacts with and recruits additional replication factorsDn
43、aA in E. coli (all 3 functions), origin recognition complex (ORC) in eukaryotes (functions 1 & 3)Figure 8-26 Functions of the initiator proteins during the initiation of DNA replication.CHAPTER 8123CHAPTER 8(1) Protein-protein and protein-DNA interactions direct the initiation processDnaA recruits t
44、he DNA helicase, DnaB and the helicase loader DnaCDnaB interacts with primase to initiate RNA primer synthesis, see replisome part for more details.Figure 8-27 Models for E. coli initiation of DNA replicationCHAPTER 8Figure 8-27 Models for E. coli initiation of DNA replicationCHAPTER 8下列概念之间的关系:下列概念
45、之间的关系:复制子(复制子(replicon)复制器(复制器(replicator)复制起始位点(复制起始位点( origin of replication )复制体(复制体(replisome)起始位点识别复合体(起始位点识别复合体(origin recognition complex, ORC)起始子(起始子(initiator)DNAProtein(2) Eukaryotic chromosome are replicated exactly once per cell cycle, which is critical for these organimsCHAPTER 81)当)当DN
46、A复制时,必须复制时,必须激活足够多的起始位点,激活足够多的起始位点,以保证每个以保证每个S期中每条染期中每条染色体都被完全复制;色体都被完全复制;2)通常一个细胞周期,起始通常一个细胞周期,起始位点只被激活一次,位点只被激活一次, 即即复制只完成一次。如果某复制只完成一次。如果某些区域没有被复制,就会些区域没有被复制,就会产生染色体断裂。产生染色体断裂。 Figure 8-29 Replicators are inactivated by DNA replicationCHAPTER 8(3) Pre-replicative complex (pre-RC) formation direct
47、s the initiation of replication in eukaryotesInitiation in eukaryotes requires two distinct steps1.Replicator selection: the process of identifying sequences for replication initiation (G1 phase), which is mediated by the formation of pre-RCs at the replicator region. 2.Origin activation:CHAPTER 8Fi
48、gure 8-30 Steps in the formation of the prerelicative complex (pre-RC)CHAPTER 8AAA+AAA+pre-RC的形成并不导致起始的形成并不导致起始位点位点DNA立即被解旋或者立即被解旋或者DNA聚合酶的募集,而是只聚合酶的募集,而是只有在细胞从细胞周期的有在细胞从细胞周期的G1到到达达S期后,期后,G1期形成的期形成的pre-RC才被激活,并启动复制才被激活,并启动复制起始。起始。 helicase2.Origin activation: pre-RCs are activated by two protein kin
49、ases (Cdk and Ddk) that are active only when the cells enter S phase.CHAPTER 8Kinases(激酶):是一类可以将激酶):是一类可以将磷酸基团磷酸基团共价连接到靶蛋共价连接到靶蛋白上的蛋白质。白上的蛋白质。所有的激酶在所有的激酶在G1期失活,进入期失活,进入S期后被激活期后被激活。 Assembly of the eukaryotic replication forkCHAPTER 8Figure 8-31pre-RC(4) Pre-RC formation and activation is regulated t
50、o allow only a single round of replication during each cell cycle.Only one opportunity for pre-RCs to form, and only one opportunity for pre-RC activation.CHAPTER 8Cdks: cyclin-dependent kinasesFigure 8-32 Effect of Cdk activity on pre-RC formation and activationCHAPTER 8G1 phaseS/G2/M phaseFigure 8
51、-32 Cell cycle regulation of Cdk activity and pre-RC formatinCHAPTER 8Same points between eukaryotic and prokaryotic DNA replication initiationCHAPTER 81)Recognize the replicator (DnaA vs ORC ); 2)Assembles the DNA helicase on the replicator (DnaB vs Mcm2-7); 3) Helicase generates a region of ssDNA
52、for RNA primer synthesis; 4) The replisome assembles and start DNA replication.Different points between eukaryotic and prokaryotic DNA replication initiationCHAPTER 8In bacteria cells:1) Initiate replication more than once per cell cycle;2) Focus regulation on the binding of the DnaA initiator prote
53、in to the DNA . In eukaryotic cells:1) Initiate replication only once per cell cycle; 2) Focus regulation on the binding of the Mcm helicase to the DNA . T8: FINISHING REPLICATIONCHAPTER 8 DNA 复制的完成需要一系列复杂的过程,复制的完成需要一系列复杂的过程,对于环形和线性染色体来说,这些过程有所对于环形和线性染色体来说,这些过程有所不同。不同。 环形染色体的复制叉机器能够复制整个分环形染色体的复制叉机器能
54、够复制整个分子,但是产生的子代分子之间是相互拓扑连子,但是产生的子代分子之间是相互拓扑连接的。接的。 线性染色体最末端处的复制是通过线性染色体最末端处的复制是通过端粒酶端粒酶延伸染色体延伸染色体3端端来解决末端复制的问题。来解决末端复制的问题。(1) Type II topoisomerases are required to separate daughter DNA moleculesCHAPTER 8(2) Lagging-strand synthesis is unable to copy the extreme ends of linear chromosomesCHAPTER 8F
55、ig 8-35End replication problemTelomereStructure of human telomereCHAPTER 8 端粒是染色体末端的一种特殊结构,是端粒是染色体末端的一种特殊结构,是DNA与相关蛋白质的复合与相关蛋白质的复合体。端粒体。端粒DNA由许多短的富含鸟嘌呤(由许多短的富含鸟嘌呤(G)的重复序列串联而成,)的重复序列串联而成,可长达可长达10kb以上。人的端粒重复序列为以上。人的端粒重复序列为TTAGGG,长达,长达15kb。 端粒主要有两大生理功能:(端粒主要有两大生理功能:(1)维持染色体结构的完整性,防止)维持染色体结构的完整性,防止染色体被核
56、酸酶降解及染色体间相互融和。(染色体被核酸酶降解及染色体间相互融和。(2)防止染色体结构)防止染色体结构基因在复制时丢失,解决了末端复制的难题。基因在复制时丢失,解决了末端复制的难题。 Figure 4-41 Telomeres form a looped structure in the cellCHAPTER 8TelomeraseChromosome duplication & segregation端粒的合成主要依靠端粒的合成主要依靠端粒酶端粒酶来催化。端粒酶是来催化。端粒酶是RNA与蛋白质组成与蛋白质组成的核糖核蛋白,是一种的核糖核蛋白,是一种RNA依赖性依赖性DNA聚合酶聚合酶。人
57、类端粒酶。人类端粒酶RNA成分已被成功克隆,它包括与端粒重复序列互补的成分已被成功克隆,它包括与端粒重复序列互补的11个核苷个核苷酸酸5-CUAACCCUAAC-3。端粒酶的主要作用是维持端粒的长度。它能利用端粒端粒酶的主要作用是维持端粒的长度。它能利用端粒3端单链为端单链为引物,自身的引物,自身的RNA为模板合成端粒重复序列添加到染色体末端,为模板合成端粒重复序列添加到染色体末端,从而延长端粒的长度。人的生殖细胞、造血干细胞及从而延长端粒的长度。人的生殖细胞、造血干细胞及T、B淋巴细淋巴细胞中端粒酶有不同程度的表达,胞中端粒酶有不同程度的表达,而在正常的体细胞中,端粒酶处而在正常的体细胞中,
58、端粒酶处于失活状态,因此体细胞随细胞分裂次数的增加端粒逐渐缩短。于失活状态,因此体细胞随细胞分裂次数的增加端粒逐渐缩短。端粒的长度与有丝分裂次数相关,所以端粒又有细胞的端粒的长度与有丝分裂次数相关,所以端粒又有细胞的“有丝分有丝分裂钟裂钟”之称之称. telomerase_function.swfTelomerase Replicates the Ends of Eukaryotic ChromosomesCHAPTER 8The telomerase is a proteinRNA complex that carries an RNA template for synthesizing a
59、 repeating, G-rich telomere DNA sequence. 端粒酶的组成:端粒酶的组成:RNA:模板:模板蛋白:蛋白:DNA聚合酶聚合酶The Nobel Prize in Physiology or Medicine 2009for the discovery of how chromosomes are protected by telomeres and the enzyme telomeraseElizabeth H. BlackburnCarol W. GreiderJack W. Szostak1/3 of the prize1/3 of the prize
60、1/3 of the prizeUSAUSAUSAUniversity of California San Francisco, CA, USAJohns Hopkins University School of Medicine Baltimore, MD, USAHarvard Medical School; Massachusetts General Hospital Boston, MA, USA; Howard Hughes Medical Institute b. 1948(in Hobart, Tasmania, Australia)b. 1961b. 1952(in Londo
61、n, United Kingdom)Scientists reverse some age effects in mice. Researchers artificially age rodents by suppressing a gene that helps repair telomeres, then rejuvenate them by turning back on the genetic switch. But the work is far from any use on humans. (Dr. Ronald DePinho, a molecular biologist at
62、 the Dana-Farber Cancer Institute at Harvard Medical School), Los Angeles TimesIs This The Fountain Of Youth?Scientists Find Way to Partially Reverse Aging in MiceTelomerase in humanTelomerase is on during fetal development and remain active in various proliferativecells.- stem cell, germ cell, hair
63、, activated lymphocytes, etcTelomerase is down-regulated but still detectable in many other adult cells.-epithelial-fibroblast-endothelial90% of human tumorsActiveDown regulatedHighly Active癌症基因治疗的靶点癌症基因治疗的靶点PNAS:父系祖父晚育加:父系祖父晚育加长孙辈端粒端粒长度度 一项刊登在PNAS上的研究提出,男性进行生育的年龄可能决定了他的孙辈的端粒的长度。在大多数细胞中,端粒随着衰老而缩短。但是
64、在精子中,端粒随着衰老而加长。相应地,在较大年龄进行生育的男性得到的孩子的端粒比在较小年龄进行生育的男性孩子的端粒更长。DNA复制的一般特点复制的一般特点1. DNA的双螺旋的两条链在局部需要解开(解旋酶),以利于每的双螺旋的两条链在局部需要解开(解旋酶),以利于每条链作模板。条链作模板。2. DNA的局部解旋引起周围区域过度缠绕,的局部解旋引起周围区域过度缠绕,拓朴异构酶拓朴异构酶使超螺旋使超螺旋张力释放。张力释放。3. DNA聚合酶以聚合酶以5-3方向合成。方向合成。DNA的两条链方向相反的两条链方向相反,因此,因此,一条链的合成是连续的,而另一条链的合成则是不连续的。不连续一条链的合成是
65、连续的,而另一条链的合成则是不连续的。不连续链每个片段的合成都是独立进行的,然后各片段再连接起来。链每个片段的合成都是独立进行的,然后各片段再连接起来。4. DNA复制必须高度精确,复制必须高度精确,DNA复制错误率大约是复制错误率大约是10-5,校正机,校正机制保证新合成的制保证新合成的DNA的正确性。的正确性。5. DNA的合成必须非常迅速,其合成速度与基因组的大小及细胞的合成必须非常迅速,其合成速度与基因组的大小及细胞分裂速度有关。分裂速度有关。6. 复制器本身不能复制线性复制器本身不能复制线性DNA的末端,端粒酶参与端粒的复制。的末端,端粒酶参与端粒的复制。 本章要点n n概念概念概念
66、概念:半保留复制、半不连续复制、前导链、后随链、冈崎:半保留复制、半不连续复制、前导链、后随链、冈崎:半保留复制、半不连续复制、前导链、后随链、冈崎:半保留复制、半不连续复制、前导链、后随链、冈崎片段、复制子、复制叉、片段、复制子、复制叉、片段、复制子、复制叉、片段、复制子、复制叉、 解旋酶、引物酶、拓扑异构酶、解旋酶、引物酶、拓扑异构酶、解旋酶、引物酶、拓扑异构酶、解旋酶、引物酶、拓扑异构酶、 DNADNA聚合酶、端粒酶、端粒。聚合酶、端粒酶、端粒。聚合酶、端粒酶、端粒。聚合酶、端粒酶、端粒。n nDNADNA复制过程中涉及的酶或蛋白质有哪些?各自有何功能?复制过程中涉及的酶或蛋白质有哪些?
67、各自有何功能?复制过程中涉及的酶或蛋白质有哪些?各自有何功能?复制过程中涉及的酶或蛋白质有哪些?各自有何功能?n n原核生物与真核生物原核生物与真核生物原核生物与真核生物原核生物与真核生物DNADNA聚合酶结构及功能的异同?聚合酶结构及功能的异同?聚合酶结构及功能的异同?聚合酶结构及功能的异同?n n原核、真核原核、真核原核、真核原核、真核DNADNA复制起始的异同点?复制起始的异同点?复制起始的异同点?复制起始的异同点?n nE.Coli E.Coli 基因组复制的过程?基因组复制的过程?基因组复制的过程?基因组复制的过程?n n端粒如何复制?端粒与衰老的关系如何?端粒如何复制?端粒与衰老的关系如何?端粒如何复制?端粒与衰老的关系如何?端粒如何复制?端粒与衰老的关系如何?n端粒酶组成及功能的是什么?端粒酶组成及功能的是什么?