电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

离散时间信号处理DSP第章ppt课件

101页
  • 卖家[上传人]:pu****.1
  • 文档编号:591428655
  • 上传时间:2024-09-17
  • 文档格式:PPT
  • 文档大小:2.32MB
  • 离散时间信号处理DSP第章ppt课件_第1页
    离散时间信号处理DSP第章ppt课件_第2页
    离散时间信号处理DSP第章ppt课件_第3页
    / 101 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 1、Digital Signal ProcessingChapter 7Filter Design Techniques7.1 Design of Discrete-Time IIR Filters from Continuous-Time FiltersIn the chapter, we deal with the digital filter design methods in which a desired frequency response of the system is approximated by a system function consisting of a ratio of polynomials.Generally, the design of an IIR digital filter is carried out in three steps as follows.SpecificationsApproximationsRealization7.1 Design of Discrete-Time IIR Filters from Continuous-Ti

      2、me FiltersIIR 数字滤波器的设计方法从模拟滤波器设计IIR数字滤波器直接设计IIR数字滤波器冲激呼应不变法双线性变换法零极点累试法频域逼进法时域逼进法Figure 1 Ideal magnitude specifications for digital lowpass filter理想滤波器的幅度特性有理想、陡截止的通带和无穷大衰减的阻带两个范围,如图1所示,这显然是无法实现的,由于它们的单位取样呼应均是非因果和无限长的。实际中只能用一种因果可实现的滤波器去与之逼近,使其满足给定的误差容限。一个实践滤波器的幅度特性在通带中允许有一定的动摇,阻带衰减那么应大于给定的衰减要求,且在通带与阻带之间允许有一定宽度的过渡带,如图2所示。 w-2p-p0p2pFigure 2 Magnitude specifications for digital lowpass filtertransition bandpassbandstopbandLowpass filter specificationPassband通带 The frequency range of 0 pc is calle

      3、d the passband;pc is the passband cutoff frequency通带截止频率;p is the passband tolerance, that isStopband阻带 The frequency range of sc is called the stopband;sc is the stopband cutoff frequency阻带截止频率;s is the stopband tolerance, that isTransition bandThe frequency range of pc sc is called the transition band;Lowpass filter specificationMaximum passband attenuation pMinimum stopband attenuation pCommonly, the maximum magnitude response is assumed to be normalized to unity. For a lowpass filter, we hav

      4、eDesign Stages for Digital FilterDesign stagesAnalog filter approximations, including Butterworth, Chebyshev and elliptic.Continuous-time to discrete-time transformation, including impulse invariance and bilinear transformation.Frequency transformations, that is, transforming a lowpass filter into a highpass or bandpass or bandstop filter.1 Analog Butterworth巴特沃思Lowpass FiltersThe Butterworth lowpass filter has several properties:All poles, and no zero.No ripples波纹 in the passband and stopband.T

      5、he Butterworth lowpass filter is defined in a magnitude-squared function幅度平方函数:where N is a positive integer and is called the order of the filter, c is the passband cutoff frequency1 Analog Butterworth Lowpass FiltersBecause The cutoff frequency c is called the half-power frequency point of the filter.The maximum passband attenuation is the frequency c is also called 3-dB cutoff frequency or 3-dB bandwidth of the filter.1 Analog Butterworth Lowpass FiltersIn practical applications, the analog l

      6、owpass filter is specified by the specifications as follows:pc: the passband cutoff frequency in rad/s;p: the maximum passband attenuation in dB;sc: the stopband cutoff frequency in rad/s;s: the minimum stopband attenuation in dB;To use the Butterworth lowpass filter to approximate a lowpass filter, we should obtain the order N and the 3-dB cutoff frequency c.1 Analog Butterworth Lowpass FiltersThe magnitude response of the filter isThe maximum passband attenuation p arrives at =pc, which is rep

      7、resented asThe minimum stopband attenuation s arrives at =sc, which is represented as(7.141)(7.142)(7.140)1 Analog Butterworth Lowpass FiltersSolving the above two equations, we have1 Analog Butterworth Lowpass FiltersThere are two choices to determine cSubstituting N in Eq.(7.141), we have Using this formula to determine c, p is exactly met at =pc and s is exceeded for the stopband, provided that p3dB.Substituting N in Eq.(7.142), we have Using this formula to determine c, s is exactly met at =

      8、sc and p is exceeded for the passband, provided that s3dB.1 Analog Butterworth Lowpass FiltersTo determine the transfer function Ha(s) of the filter, we substitute s = j, thereforeThe poles of the magnitude-squared function Ha(s)Ha(-s) are given by Figure 3 shows all the poles when N = 3.Figure 3 Pole plot for a third-order Butterworth filterk = 0k = 1k = 2k = 3k = 4k = 5j1 Analog Butterworth Lowpass FiltersThe 2N poles equally spaced in angle on a circle in the s-plane. They are symmetric about

      9、 the imaginary axis.In order to obtain a stable system, we choose the n poles on the left-side of the s-plane. Then, we get the transfer function as follows where1 Analog Butterworth Lowpass FiltersThe attenuation of the Butterworth approximation increases monotonically单调地with frequency. And it increases very slowly in the passband and quickly in the stopband.If one wants to increase the attenuation one has to increase the filter order.The 3-dB bandwidth is unrelated to the filter order.Figure 4

      10、 The magnitude-frequency response of Butterworth Lowpass Filters 2 Analog Chebyshev切贝雪夫Lowpass FiltersThe Chebyshev-I lowpass filters have equiripple等波纹的 magnitude response in the passband and monotonic单调的 magnitude response in the stopband.The magnitude-squared response of an analog Chebyshev-I lowpass filter is given bywhere N is the order of the filter, is a positive and less than unity number which is the passband ripple factor, c is the passband cutoff frequency at which the attenuation of

      11、the magnitude response is not necessary to be 3-dB. The function TN(x) is an Nth-order Chebyshev polynomial defined by(7.147)2 Analog Chebyshev Lowpass FiltersThe characteristics of the Chebyshev-I filters are as follows: At = 0, |Ha(j0)| = 1 for N odd and |Ha(j0)| = for N even;At =c, |Ha(jc)| = for all N;Within the passband of 0c, |Ha(j)| oscillates between 1 and ;For c, |Ha(j)| approaches zero monotonically and rapidly;At =s (the stopband cutoff frequency), |Ha(js)| = 1/A.Figure 5 Analog Cheby

      12、shev Lowpass Filters2 Analog Chebyshev Lowpass FiltersIn the design of Chebyshev-I lowpass filter, the specifications are given by:c: the passband cutoff frequency in rad/s;p: the passband ripple in dB;s: the stopband cutoff frequency in rad/s;s: the minimum stopband attenuation in dB;To design the filter, the order N and ripple factor should be determined.2 Analog Chebyshev Lowpass FiltersSince Then And Therefore 2 Analog Chebyshev Lowpass FiltersTo obtain the transfer function Ha(s) of the Che

      13、byshev-I filter, we substitute =s/j into Eq.(7.147) (p19), and then we getThere are 2N poles of the magnitude-squared function Ha(s)Ha(-s), They are spaced on a ellipse in the s-plane and symmetric about the imaginary axis.In order to obtain a stable system, we choose the N poles on the left-side of the s-plane and get the transfer function as follows.2 Analog Chebyshev Lowpass Filterswhereand 两种典型模拟滤波器两种典型模拟滤波器:Butterworth巴特沃思滤波器:幅频特性单调下降,但衰减特性较差;Chebyshev切贝雪夫滤波器:在通带或阻带中幅频特性单调下降,在阻带或通带中有波纹,衰减特性

      14、好于巴特沃思滤波器;Analog-to-Digital Filter Transformations The continuous-time to discrete-time transformations include three steps:Transformations of specifications in discrete-time domain into ones in continuous-time domain.Designing the analog filter according to the specifications in continuous-time domain.Transform the filter in s domain into the one in z domain.The main methods of transformations have two kinds:Impulse-invariance methodBilinear transformation methodz transform and Laplace transfor

      15、mLaplace transformz transformThe Laplace transform of x(nT) isTherefore the relationship between the Laplace transform and z transform of x(nT) isz transform and Laplace transformLet and The relationship between r and If = 0 s 平面的虚轴, r = 1z平面单位圆上; If 0 s 平面的右半平面, r 1z平面单位圆外; If 0 s 平面的左半平面, r 1z平面单位圆内.The relationship between and : = T If = 0 s 平面的实轴, = 0 z平面正实轴 = 0 s 平面平行于实轴的直线, = 0T z平面始于原点角度为 = 0T 的辐射线.z transform and Laplace transform 从 /T 增长到 /T,相应的, 从 增长到 ,即 s 平面宽为 2/T 的一个程度条带相当于 z 平面辐角转了一

      16、周,即整个 z 平面。因此 每添加一个抽样角频率 s = 2/T,那么 添加 2。所以从 s 平面到 z 平面的映射是多值映射。7.1.1 Filter Design by Impulse InvarianceThe transfer function of the analog filter can be expressed in terms of a partial-fraction expansion as followsThe corresponding impulse response is7.1.1 Filter Design by Impulse InvarianceSampling the analog impulse response, we can obtain the discrete-time impulse responseThe corresponding discrete-time transfer function iss 平面的单极点 s = pl 变换为 z 平面上 z = eplT 处的单极点;Ha(s) 与 H(z) 的部分分式的系数是一样的;假

      17、设模拟滤波器是稳定的,即一切极点 s = pl 的实部小于零,那么一切 z = eplT 均在单位圆内,即变换后的数字滤波器也是稳定的。7.1.1 Filter Design by Impulse Invariance7.1.1 Filter Design by Impulse InvarianceIn order to obtain the same passband gain for the continuous- and discrete-time filters, we should use the following expression for Hd(z):ExampleTransform the continuous-time lowpass filter transfer function given byinto a discrete-time transfer function using the impulse invariance transformation method with s = 10 rad/s. Solution Example (cont.)E

      18、xample (cont.)7.1.2 Bilinear TransformationThe bilinear transformation method avoids the problem of aliasing.In the bilinear transformation method, the entire s-plane is mapped into the entire z-plane.The left half s-plane maps into the interior of the unit circle in the z-plane;The right half s-plane maps into the exterior of the unit circle in the z-plane;The imaginary axis of the s-plane maps onto the unit circle;7.1.2 Bilinear TransformationThe bilinear transformation is defined asIf the con

      19、tinuous-time transfer function is Ha(s), thenFrequency transformation relation 7.1.2 Bilinear TransformationThat isSince We should choose7.1.2 Bilinear TransformationIn conclusion, the bilinear transformation of a continuous-time transfer function into a discrete-time transfer function isTherefore the bilinear transformation maps analog frequencies into digital frequencies as follows:For high frequencies, this relationship is highly nonlinear.The bilinear transformation method avoids the problem

      20、 of aliasing, but the price paid for this is the introduction of a distortion in frequency axis, known as the warping. 7.1.2 Bilinear TransformationThe warping effect can be compensated by prewarping the frequency specifications. The steps arePrewarp the passband and stopband frequencies and obtain ap and ar through the following mapping:Generate Ha(s) satisfying the specifications for the frequencies ap and ar ;Obtain Hd(z) by replacing s with in Ha(s).7.2 Design of FIR Filters by WindowingBasi

      21、c conceptionIn order to design the frequency responses satisfying the prescribed specifications, the filter order and multiplier coefficients should be determined.Characteristics of FIR filtersIt is possible to obtain exact linear phase.FIR systems are always stable.Fast algorithms such as FFT can be used.A higher order means more delays, multipliers and adders.Design approaches frequency sampling, window functions, maximally flat approximation.Ideal characteristics of standard filtersFour commo

      22、nly used FIR filtersLowpass filtersHighpass filtersBandpass filtersBandstop filtersFourier transform pairFour ideal filters lowpassFrequency responseImpulse response1Figure - impulse response of lowpass filterFour standard filters highpassFrequency responseImpulse response1Figure - impulse response of highpass filterFour standard filters bandpassFrequency responseImpulse response1Figure - impulse response of bandpass filterFour standard filters bandstopFrequency responseImpulse response1Figure -

      23、 impulse response of bandstop filterNotesThe durations of the impulse responses of the four kinds of filters are infinite. The impulse responses are noncausal.So, all these four kinds of filters are ideal ones and can not be realized.Properties of Linear Phase FIR FiltersThe linear-phase FIR filters:This equation shows that the h(n) of a linear-phase FIR filter is symmetric or antisymmetric about M/2. There are four kinds of linear-phase FIR filters, which is shown in the figures.Properties of L

      24、inear Phase FIR Filtersnh(n)2103 4 5 6 7 8nh(n)2103 4 5 6 7 8 9nh(n)2103 45 6 7 8nh(n)2103 45 6 7 8 9symmetricantisymmetricM evenM oddType IType IIType IIIType IVFrequency sampling频率采样法工程上,常给定频域上的技术目的,所以采用频域设计更直接。根本思想:使所设计的FIR数字滤波器的频率特性在某些离散频率点上的值准确地等于所需滤波器在这些频率点处的值,在其它频率处的特性那么有较好的逼近。Step 1Step 2Step 3Step 4采样采样IDFTFTFrequency sampling1)Let Hd() be the desired frequency response.2)The design approach of frequency sampling is just to sample the Hd().3)Suppose that H(k) are samples of the Hd(), i.

      25、e.4)Let5) then A(k) = |H(k)|6) (k) = argH(k)7) A(k) is the magnitude of the H(k) and (k) its phase.Frequency sampling3)We can get the impulse response h(n) from H(k) using IDFT 4) 5) 6)Then the z transform of the designed FIR filter7) 8) we can also get the frequency response H(e j) For exampleRipples in the passband and stopband. Frequency samplingIf the linear phase is required, A(k) and (k) must satisfy the conditions for linear phase.Four types of linear-phase filtersType I: the order M is e

      26、ven and the h(n) is symmetric.Type II: the order M is odd and the h(n) is symmetric.Type III: the order M is even and the h(n) is antysymmetric.Type IV: the order M is odd and the h(n) is antysymmetric.Relation between the length of h(n), N, and order MN = M +1Frequency sampling type I In this case, the order M is even and the h(n) is symmetric.ReviewThe frequency responseH() is symmetric about = 0 and = .Frequency sampling type I Phase MagnitudeFrequency sampling type IIIn this case, the order

      27、M is odd and the h(n) is symmetric.ReviewThe frequency responseH() is symmetric about = 0 and antisymmetric about = . So, H() = 0, at = .Frequency sampling type IIPhase MagnitudeBecause H() = 0, at = , highpass and bandstop filters cannot be realized in Type II filters.Frequency sampling type III In this case, the order M is even and the h(n) is antisymmetric.ReviewThe frequency responseH() is antisymmetric about = 0 and = . So, H() = 0, at = 0 and = .Frequency sampling type III Phase MagnitudeB

      28、ecause H() = 0, at = 0 and = , lowpass, highpass and bandstop filters cannot be realized in Type III filters.Frequency sampling type IV In this case, the order M is odd and the h(n) is antisymmetric.ReviewThe frequency responseH() is antisymmetric about = 0 and symmetric at = . So, H() = 0, at = 0.Frequency sampling type IV Phase MagnitudeBecause H() = 0, at = 0, lowpass and bandstop filters cannot be realized in Type IV filters. h(n)MH()的对称性可实现的滤波器I 型偶对称偶数在 = 0 及 = 处偶对称四种滤波器都可设计II 型偶对称奇数在 = 0 处

      29、偶对称,在 = 处奇对称不能设计高通和带阻,可设计低、带通滤波器III 型奇对称偶数在 = 0 及 = 处奇对称不能设计低通、高通和带阻,只能设计带通滤波器IV 型奇对称奇数在 = 0 处奇对称, 在 = 处偶对称不能设计低通和带阻,可设计高通、带通滤波器Design of Linear-Phase FIR filters using windowsAll ideal filters have infinite duration, so they can not be realized. Truncating the impulse response h(n), we can get its approximation with finite duration.where M is the filter order and assuming that it is even. The transfer function isDesign of Linear-Phase FIR filters using windowsAfter h(n) is truncated, the system

      30、 is still noncausal. In order to make it causal, we can shift it right by M/2, without either distorting the filter magnitude response or destroying the linear-phase property.There are ripples close to the band edges in the magnitude response. These ripples are referred to as Gibbs oscillations. And the amplitudes of Gibbs oscillations do not decrease even the filter order M is increased.Design of Linear-Phase FIR filters using windowsMultiplying the impulse response h(n) by a window function w(

      31、n), that is,we can improve the magnitude response.The multiplication in the time domain corresponds to periodic convolution integral of H(ej) and W(ej) in the frequency domain, that is Magnitude responses of a window function|W(ej)|Main lobeSide lobe主瓣旁瓣Magnitude responses of a window function正肩峰正肩峰负肩峰负肩峰Design of Linear-Phase FIR filters using windows最大旁瓣的相对幅度越小即能量越集中在主瓣上,起伏振荡的幅度越小,阻带衰减越多;窗函数频谱的主瓣越窄,过渡带越陡;这两者是矛盾的。|W(ej)|Main lobeSide lobe主瓣旁瓣1 Rectangular window矩形窗The rectangular window functio

      32、nThe frequency response of the rectangular window1 Rectangular window2 Triangular window and Bartlett windowThe triangular window functionThe Bartlett window function2 Triangular window三角形窗Bartlett window3 Hamming and Hanning windowsThe window function with 0 1.When =0.54, it is called the Hamming window海明窗.When =0.5, it is called the Hanning window汉宁窗.Hamming windows海明窗3 Hamming and Hanning windowsThe transition band过渡带of the Hamming window is larger than that of the rectangular windows, due to

      33、 its wider main lobe.The ratio between the amplitudes of the main and secondary lobes of the Hamming window is much larger than for the rectangular window. So the stopband attenuation衰减for the Hamming window is larger than the attenuation for the rectangular window.Hanning windows汉宁窗4 Blackman window布莱克曼窗The Blackman windowBlackman windowCommonly used windows in time domainnw(n)0RectangularBartlettHammingHanningBalckman矩形窗矩形窗三角形窗三角形窗海明窗海明窗汉宁窗汉宁窗布莱克曼窗布莱克曼窗矩形窗、三角性矩形窗、三角性窗、海明窗、汉窗、海明窗、汉宁窗、布莱克曼宁窗、布莱克

      34、曼窗随着窗外形的窗随着窗外形的变化,旁瓣衰减变化,旁瓣衰减加大,但主瓣宽加大,但主瓣宽度也加宽了;度也加宽了;ExampleUsing the rectangular, Hamming, Hanning, and Blackman windows, design a bandstop filter whose specifications are below M = 80 (order of the bandstop filter) p1 = 2000 rad/s (the first passband frequency) p2 = 4000 rad/s (the second passband frequency) s = 10000 rad/s (sampling frequency) Solution:Example (cont.)Example (cont.)From the figure, we should notice thatAs the ripple decreases and the stopband attenuation increases, the widt

      35、h of the transition band increases accordingly when going from the rectangular to the Blackman window.5 Kaiser windowAll the window functions introduced so far have no control ability over the passband and stopband ripples. So when the ripple specifications are given, those window functions have little use.Kaiser and Dolph-Chebyshev windows can overcome such problems.When using Kaiser and Dolph-Chebyshev windows to design filters, not only the specification of passband and stopband frequencies s

      36、hould be given, but also the passband and stopband ripples are provided.5 Kaiser window5 Kaiser windowThe Kaiser window function is defined asI0() is the modified zeroth order Bessel function of the first kind第一类变形零阶贝塞尔函数. The parameter is the key in designing filters and gotten by the specifications 越大,w(n)窗越窄,频谱的旁瓣越小,但主瓣宽度也相应添加.Kaiser window6 Dolph-Chebyshev windowThe Mth-order Chebyshev polynomial is defined asFor exampleRecurrence formula6 Dolph-Chebyshev windowThe Dolph-Chebyshev window is defined aswhere r is given by r = r/p and x0 byDolph-Chebyshev window窗函数法设计流程确定所需理想滤波器的频率呼应 Hd(ej) 及其冲激呼应 hd(n) Y选择窗函数 w(n) 及窗口长度 N加窗: h (n) = hd(n)w(n)结 束H(ej) = FTh(n) NH(ej) 满足要求?

      《离散时间信号处理DSP第章ppt课件》由会员pu****.1分享,可在线阅读,更多相关《离散时间信号处理DSP第章ppt课件》请在金锄头文库上搜索。

      点击阅读更多内容
      1、金锄头文库是“C2C”交易模式,即卖家上传的文档直接由买家下载,本站只是中间服务平台,本站所有文档下载所得的收益全部归上传人(卖家)所有,作为网络服务商,若您的权利被侵害请及时联系右侧客服;
      2、如你看到网页展示的文档有jinchutou.com水印,是因预览和防盗链等技术需要对部份页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有jinchutou.com水印标识,下载后原文更清晰;
      3、所有的PPT和DOC文档都被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;下载前须认真查看,确认无误后再购买;
      4、文档大部份都是可以预览的,金锄头文库作为内容存储提供商,无法对各卖家所售文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;
      5、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据;
      6、如果您还有什么不清楚的或需要我们协助,可以点击右侧栏的客服。
    新上传的文档
    【6篇文】2025年“四个带头”方面生活会个人检视检查材料(含反面案例、典型案例剖析)+存在问题示例50条 2025年“四个带头”发言材料6篇 2025年专题生活会“四个带头”领导干部对照检查材料(含反面典型案例)+检视问题台账20条+意见建议6份材料 2025年“四个带头”方面生活会个人检视检查材料(含反面案例)与批评与自我批评材料(14个方面28组)6篇文 2025年“四个带头”存在的问题原因及今后努力方向个人检视检查材料(含反面案例)6篇例文 2025年“四个带头”存在的问题、原因分析、改进措施、个人检视解析材料6篇文 2025年生活会个人检视材料【违纪行为典型案例剖析】、主持词、“四个带头方面”对照个人检查材料6篇例文 2025年带头严守政治纪律和政治规矩方面等“四个带头”方面对照个人检视发言材料6篇文 【数学】整式的乘法基础过关测试卷++2024-2025学年北师大版数学七年级下册 【数学】第2课时幂的乘方教学设计2024-2025学年北师大版数学七年级下册 【语文】第20课《外国诗二首》课件+2024—2025学年统编版语文七年级下册 【地理】亚洲及欧洲第二课时气候教学设计-2024-2025学年七年级地理下学期(湘教版2024) 【数学】用坐标表示平移 教学设计++2024-2025学年人教版数学七年级下册 【语文】第5课《黄河颂》课件+2024-2025学年统编版(2024)语文七年级下册 【地理】澳大利亚 课时作业-2024-2025学年+七年级地理湘教版(2024)下册
    最新标签
    公安主题党日 部编版四年级第三单元综合性学习课件 机关事务中心2022年全面依法治区工作总结及来年工作安排 入党积极分子自我推荐 世界水日ppt 关于构建更高水平的全民健身公共服务体系的意见 空气单元分析 哈里德课件 2022年乡村振兴驻村工作计划 空气教材分析 五年级下册科学教材分析 退役军人事务局季度工作总结 集装箱房合同 2021年财务报表 2022年继续教育公需课 2022年公需课 2022年日历每月一张 名词性从句在写作中的应用 局域网技术与局域网组建 施工网格 薪资体系 运维实施方案 硫酸安全技术 柔韧训练 既有居住建筑节能改造技术规程 建筑工地疫情防控 大型工程技术风险 磷酸二氢钾 2022年小学三年级语文下册教学总结例文 少儿美术-小花 2022年环保倡议书模板六篇 2022年监理辞职报告精选 2022年畅想未来记叙文精品 企业信息化建设与管理课程实验指导书范本 草房子读后感-第1篇 小数乘整数教学PPT课件人教版五年级数学上册 2022年教师个人工作计划范本-工作计划 国学小名士经典诵读电视大赛观后感诵读经典传承美德 医疗质量管理制度 2 2022年小学体育教师学期工作总结 2022年家长会心得体会集合15篇 农村发展调研报告_1范文 2022年电脑说明文作文合集六篇 2022年防溺水初中生演讲稿 2021最新36岁儿童学习与发展指南心得体会 2022年新生迎新晚会策划书模板 20 xx年教育系统计划生育工作总结 英语定语讲解ppt课件 2021年4s店客服工作计划范文 2022年小学优秀作文700字四篇
     
    收藏店铺
    相关文档 更多>
    正为您匹配相似的精品文档
    关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
    手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
    ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.