《空气动力学课件第1章流体属性与流体静力学》由会员分享,可在线阅读,更多相关《空气动力学课件第1章流体属性与流体静力学(68页珍藏版)》请在金锄头文库上搜索。
1、1.1 流体属性流体属性1.2 作用在流体微团上力的分类作用在流体微团上力的分类1.3 理想流体内一点的压强及其各向同性理想流体内一点的压强及其各向同性1.4 流体静平衡微分方程流体静平衡微分方程1.5 重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律1.6 液体的相对平衡问题液体的相对平衡问题1.7 标准大气标准大气第第第第1 1章章章章 流体属性和流体静力学流体属性和流体静力学流体属性和流体静力学流体属性和流体静力学 流体力学和空气动力学是从宏观上研究流体(空气)的运流体力学和空气动力学是从宏观上研究流体(空气)的运动规律和作用力规律的学科,流体力学和空气动力学常用动规律和作用
2、力规律的学科,流体力学和空气动力学常用“介质介质”一词表示它所处理一词表示它所处理 的流体,流体包含液体和气体。的流体,流体包含液体和气体。1.1 1.1 流体属性流体属性流体属性流体属性1.1.1 1.1.1 连续介质的概念连续介质的概念连续介质的概念连续介质的概念从微观角度而言不论液体还是气体其分子之间都存在间从微观角度而言不论液体还是气体其分子之间都存在间隙,但这个距离与我们宏观上关心的物体(如飞行器)隙,但这个距离与我们宏观上关心的物体(如飞行器)的任何一个尺寸的任何一个尺寸 L L 相比较都是微乎其微的相比较都是微乎其微的例如海平面条件下,空气分子的平均自由程为例如海平面条件下,空气
3、分子的平均自由程为 l 1010-8 -8 mmmm,1mm1mm3 3液体含液体含 3 310102121个分子,个分子,1mm1mm3 3气体含气体含 2.62.610161016个分子个分子;10;10-9-9mmmm3 3液体含液体含 3 310101212个分子,个分子, 1010-9-9mmmm3 3 气体含气体含 2.62.610107 7个分子个分子当受到物体扰动时,流体或空气所表现出的是大量分子当受到物体扰动时,流体或空气所表现出的是大量分子运动体现出的宏观特性变化如压强、密度等,而不是个运动体现出的宏观特性变化如压强、密度等,而不是个别分子的行为。别分子的行为。流体力学和空
4、气动力学所关注的正是这样的宏观特征而流体力学和空气动力学所关注的正是这样的宏观特征而不是个别分子的微观特征。不是个别分子的微观特征。如果我们将流体的最小体积单位假设为具有如下特征的如果我们将流体的最小体积单位假设为具有如下特征的流体质点:宏观上充分小,微观上足够大流体质点:宏观上充分小,微观上足够大,则可以将流,则可以将流体看成是由连绵一片的、彼此之间没有空隙的流体质点体看成是由连绵一片的、彼此之间没有空隙的流体质点组成的连续介质,这就是连续介质假设。组成的连续介质,这就是连续介质假设。 由连续质点组成的质点系称为流体微团由连续质点组成的质点系称为流体微团。1.1.1 连续介质的概念连续介质的
5、概念 一旦满足连续介质假设,就可以把流体的一切物理性一旦满足连续介质假设,就可以把流体的一切物理性质如密度、压强、温度及宏观运动速度等表为空间和时间质如密度、压强、温度及宏观运动速度等表为空间和时间的连续可微函数,便于用数学分析工具来解决问题。的连续可微函数,便于用数学分析工具来解决问题。 一般一般用努生数即分子平均自由程与物体特征尺寸之比用努生数即分子平均自由程与物体特征尺寸之比来判断流体是否满足连续介质假设来判断流体是否满足连续介质假设 : l / L 1 对于常规尺寸的物体只有到了外层大气中,对于常规尺寸的物体只有到了外层大气中, l / L 才可能等才可能等于甚至大于于甚至大于 11.
6、1.1 连续介质的概念连续介质的概念在连续介质的前提下,流体介质的密度可以表达为在连续介质的前提下,流体介质的密度可以表达为:流体为流体为均值均值时时: 流体为流体为非均值非均值时时: 其中其中 为流体空间的体积,为流体空间的体积, 为其中所包含的流体质量。为其中所包含的流体质量。1.1.1 连续介质的概念连续介质的概念下图为下图为 时平均密度的变化情况时平均密度的变化情况(设设 A点周围密度较点周围密度较 p点为大点为大): 当微团体积趋于宏观上充分小、微观上充分大的某体积当微团体积趋于宏观上充分小、微观上充分大的某体积 时,密度达到稳定值,但当体积继续缩小达到分子平均自由程时,密度达到稳定
7、值,但当体积继续缩小达到分子平均自由程 l3 量级时,其密度就不可能保持为常数。量级时,其密度就不可能保持为常数。1.1.1 连续介质的概念连续介质的概念Axyz 流体与固体在力学特性上最本流体与固体在力学特性上最本质的区的区别在于:在于:二者承受剪二者承受剪应力和力和产生剪切生剪切变形能力上的不同。形能力上的不同。 如如图所示,固体能所示,固体能够靠靠产生一定的剪切角生一定的剪切角变形量形量来来抵抗剪切抵抗剪切应力力 / GF固体1.1.2 流体的易流性流体的易流性 流体与固体的宏流体与固体的宏观差差别:固体可保持一定体固体可保持一定体积和形状和形状 液体可保持一定体液体可保持一定体积不能保
8、持形状不能保持形状 气体既不能保持体气体既不能保持体积也能不保持形状也能不保持形状静止流体在剪应力作用下(不论所加剪切应力静止流体在剪应力作用下(不论所加剪切应力多么多么小,只要不等于零)将产生持续不断的变形运动(流动),小,只要不等于零)将产生持续不断的变形运动(流动),换句话说,静止流体不能承受剪切应力,将这种特性称为换句话说,静止流体不能承受剪切应力,将这种特性称为流体的流体的易流性易流性。1F2t2t1流体1.1.2 流体的易流性流体的易流性 流体受压时其体积发生改变的性质称为流体的流体受压时其体积发生改变的性质称为流体的压缩性压缩性,而抵抗压缩变形的能力和特性称为而抵抗压缩变形的能力
9、和特性称为弹性弹性。 压缩性系数压缩性系数定义为单位压强差所产生的体积改变量定义为单位压强差所产生的体积改变量(相对):(相对): 体积体积弹性模量弹性模量定义为产生单位相对体积变化所需的压定义为产生单位相对体积变化所需的压强增高:强增高:1.1.3 1.1.3 流体的压缩性与弹性流体的压缩性与弹性后面讲到高速流动时会证明后面讲到高速流动时会证明 ,即音速的平方等于压强,即音速的平方等于压强对密度的变化率。所以气体的弹性决定于它的密度和声速:对密度的变化率。所以气体的弹性决定于它的密度和声速: 1.1.3 1.1.3 流体的压缩性与弹性流体的压缩性与弹性 当当 E E 较大时较大时 p p 较
10、小流体不容易被压缩,反之则容较小流体不容易被压缩,反之则容易被压缩。液体的易被压缩。液体的 E E 较大,通常可视为不可压缩流体,气较大,通常可视为不可压缩流体,气体的体的 E E 通常较小且与热力过程有关,故一般认为气体具有通常较小且与热力过程有关,故一般认为气体具有压缩性。压缩性。由于由于 ,E E 还可写为:还可写为: 飞行器的飞行速度飞行器的飞行速度 u u 和扰动的传播速度和扰动的传播速度 a 的比值称的比值称为马赫数:为马赫数: 由于气体的弹性决定于声速,因此马赫数的大小可看由于气体的弹性决定于声速,因此马赫数的大小可看成是气体相对压缩性的一个指标。成是气体相对压缩性的一个指标。
11、当马赫数较小时,可认为此时流动的弹性影响相对较大,当马赫数较小时,可认为此时流动的弹性影响相对较大,即压缩性影响相对较小(或一定速度、压强变化条件下,密即压缩性影响相对较小(或一定速度、压强变化条件下,密度的变化可忽略不计),从而低速气体有可能被当作不可压度的变化可忽略不计),从而低速气体有可能被当作不可压缩流动来处理。缩流动来处理。1.1.3 1.1.3 流体的压缩性与弹性流体的压缩性与弹性 反之当马赫数较大之后,可以认为此时流动的弹性影反之当马赫数较大之后,可以认为此时流动的弹性影响相对较小,即压缩性影响相对较大(或一定速度、压强变响相对较小,即压缩性影响相对较大(或一定速度、压强变化条件
12、下,密度的变化不能忽略不计)化条件下,密度的变化不能忽略不计) ,从而气体就不能被,从而气体就不能被当作不可压缩流动来处理,而必须考虑流动的压缩性效应。当作不可压缩流动来处理,而必须考虑流动的压缩性效应。 因此尽管一般我们认为气体是可以压缩的,但在考虑因此尽管一般我们认为气体是可以压缩的,但在考虑其流动时按照其速度快慢即马赫数大小将其区分为不可压流其流动时按照其速度快慢即马赫数大小将其区分为不可压流动和可压缩流动。可以证明,当马赫数小于动和可压缩流动。可以证明,当马赫数小于0.30.3时,气体的压时,气体的压缩性影响可以忽略不计。缩性影响可以忽略不计。1.1.3 1.1.3 流体的压缩性与弹性
13、流体的压缩性与弹性 实际流体都有粘性,不过有大有小,空气和水的粘性都实际流体都有粘性,不过有大有小,空气和水的粘性都不算大,日常生活中人们不会理会它,但观察河流岸边的漂不算大,日常生活中人们不会理会它,但观察河流岸边的漂浮物可以看到粘性的存在。下图直匀流流过平板表面的实验浮物可以看到粘性的存在。下图直匀流流过平板表面的实验表明了粘性的影响:表明了粘性的影响: 1.1.4 1.1.4 流体的粘性流体的粘性由于粘性影响,均匀气流流至平板后直接贴着板面的一由于粘性影响,均匀气流流至平板后直接贴着板面的一层速度降为零,称为流体与板面间层速度降为零,称为流体与板面间无滑移。无滑移。任取相邻流层考察可知外
14、层的流体受到内层流体摩擦速任取相邻流层考察可知外层的流体受到内层流体摩擦速度有变慢趋势,反过来内层流体度有变慢趋势,反过来内层流体受到外层流体摩擦拖拽受到外层流体摩擦拖拽其速度有变快趋势。其速度有变快趋势。流层间的互相牵扯作用一层层向外传递,离板面一定距流层间的互相牵扯作用一层层向外传递,离板面一定距离后,牵扯作用逐步消失,速度分布变为均匀。离后,牵扯作用逐步消失,速度分布变为均匀。 1.1.4 1.1.4 流体的粘性流体的粘性 流层间阻碍流体相对错动(变形)趋势的能力称为流流层间阻碍流体相对错动(变形)趋势的能力称为流体的粘性,相对错动流层间的一对摩擦力即粘性剪切力。体的粘性,相对错动流层间
15、的一对摩擦力即粘性剪切力。 以前述流体剪切实验为例,以前述流体剪切实验为例, 牛顿(牛顿(1686)发现,流)发现,流体作用在平板上的摩擦力正比于速度体作用在平板上的摩擦力正比于速度U 和平板面积和平板面积 A,反反比于高度比于高度 h,而,而是与流体介是与流体介质属性有关的比例常数属性有关的比例常数:F=AU/h1 1F2 2t t2 2t t1 1流体hUA 1.1.4 1.1.4 流体的粘性流体的粘性设设 表示单位面积上的内摩擦力(粘性剪切应力),则表示单位面积上的内摩擦力(粘性剪切应力),则对于一般的粘性剪切层,速度分布不是直线而是前述的曲线,对于一般的粘性剪切层,速度分布不是直线而是
16、前述的曲线,则则粘性剪切应力可写为粘性剪切应力可写为这就是著名的这就是著名的牛顿粘性应力公式牛顿粘性应力公式,它表明粘性剪切应力与速,它表明粘性剪切应力与速度梯度有关,与物性有关。度梯度有关,与物性有关。 1.1.4 1.1.4 流体的粘性流体的粘性从牛从牛顿粘性公式可以看出:粘性公式可以看出:1. 流体的剪应力与压强流体的剪应力与压强 p p 无关。无关。2. 当当 0 时,时, ,无论剪应力多小,只要存在剪应力,无论剪应力多小,只要存在剪应力,流体就会发生变形运动。流体就会发生变形运动。3. 当当 时,时,0,即只要流体静止或无变形,就不存即只要流体静止或无变形,就不存在剪应力,流体不存在
17、静摩擦力。在剪应力,流体不存在静摩擦力。 1.1.4 1.1.4 流体的粘性流体的粘性因此牛顿粘性应力公式可看成流体易流性的数学表达。因此牛顿粘性应力公式可看成流体易流性的数学表达。 速度梯度速度梯度 du/dy 物理上也表示流体质点剪切变形速度或物理上也表示流体质点剪切变形速度或角变形率角变形率 d/dt 。如图所示:如图所示: u+du dy d u dudt d =dudt/dy d /dt=du/dy 1.1.4 1.1.4 流体的粘性流体的粘性综上所述:综上所述:流体的剪切变形是指流体质点之间出现相对运动(例如流体的剪切变形是指流体质点之间出现相对运动(例如流体层间的相对运动)流体层
18、间的相对运动)流体的粘性是指流体抵抗剪切变形或质点之间的相对运流体的粘性是指流体抵抗剪切变形或质点之间的相对运动的能力动的能力流体的粘性力是抵抗流体质点之间相对运动(例如流体流体的粘性力是抵抗流体质点之间相对运动(例如流体层间的相对运动)的剪应力或摩擦力层间的相对运动)的剪应力或摩擦力在静止状态下流体不能承受剪力;但是在运动状态下,在静止状态下流体不能承受剪力;但是在运动状态下,流体可以承受剪力,剪切力大小与流体变形速度梯度有流体可以承受剪力,剪切力大小与流体变形速度梯度有关,而且与流体种类有关关,而且与流体种类有关 1.1.4 1.1.4 流体的粘性流体的粘性 液体和气体液体和气体产生生粘性
19、的物理原因粘性的物理原因不同,前者主要来自不同,前者主要来自于液体分子于液体分子间的内聚力,后者主要来自于气体分子的的内聚力,后者主要来自于气体分子的热运运动。因此。因此液体与气体动力粘性系数随温度变化的趋势相反:液体与气体动力粘性系数随温度变化的趋势相反: 液体和气体的动力粘性系数随温度变化的关系可查液体和气体的动力粘性系数随温度变化的关系可查阅相应表格或近似公式,如气体动力粘性系数的萨特兰阅相应表格或近似公式,如气体动力粘性系数的萨特兰公式等。公式等。液体:液体: 温度升高,温度升高,变小,反之变大变小,反之变大气体:气体: 温度升高,温度升高,变大,反之变小变大,反之变小 1.1.4 1
20、.1.4 流体的粘性流体的粘性 在在许多空气多空气动力学力学问题里,粘性力和里,粘性力和惯性力同性力同时存在,存在,在式子中在式子中和和往往以(往往以(/ )的组合形式出现,用符号)的组合形式出现,用符号表示表示 空气粘性不大空气粘性不大,初步近似可忽略其粘性作用,忽略粘初步近似可忽略其粘性作用,忽略粘性的流体称性的流体称为理想流体理想流体。 1.1.4 1.1.4 流体的粘性流体的粘性 按照作用力的性质和作用方式,可分为彻体力和表面按照作用力的性质和作用方式,可分为彻体力和表面力两类力两类彻体力:彻体力:外力场作用于流体微团质量中心,大小与微团质外力场作用于流体微团质量中心,大小与微团质量成
21、正比的非接触力。量成正比的非接触力。例如重力,惯性力和磁流体具有的电磁力等都属于彻体力,例如重力,惯性力和磁流体具有的电磁力等都属于彻体力,彻体力也称为体积力或质量力。彻体力也称为体积力或质量力。1.2 1.2 1.2 1.2 作用在流体微团上力的分类作用在流体微团上力的分类作用在流体微团上力的分类作用在流体微团上力的分类其中其中 是微团体积,是微团体积,为密度,为密度, 为作用于微团的彻为作用于微团的彻体力,体力,i 、j、 k 分别是三个坐标方向的单位向量,分别是三个坐标方向的单位向量,fx 、fy 、fz 分别是三个方向的单位质量彻体力分量分别是三个方向的单位质量彻体力分量 。由于彻体力
22、按质量分布,故一般用单位质量的彻体力表示,由于彻体力按质量分布,故一般用单位质量的彻体力表示,并且往往写为分量形式:并且往往写为分量形式:1.2 1.2 1.2 1.2 作用在流体微团上力的分类作用在流体微团上力的分类作用在流体微团上力的分类作用在流体微团上力的分类表面力:表面力:相邻流体或物体作用于所研究流体团块外表面,相邻流体或物体作用于所研究流体团块外表面,大小与流体团块表面积成正比的接触力。大小与流体团块表面积成正比的接触力。由于按面积分布,故用接触应力表示,并可将其分解为法由于按面积分布,故用接触应力表示,并可将其分解为法向应力和切向应力:向应力和切向应力:ATPn1.2 1.2 作
23、用在流体微团上力的分类作用在流体微团上力的分类法向应力与切向应力即摩擦应力组成接触应力:法向应力与切向应力即摩擦应力组成接触应力:上述画出的表面力对整个流体而言是内力,对所画出的流上述画出的表面力对整个流体而言是内力,对所画出的流体团块来说则是外力。体团块来说则是外力。 流体内任取一个剖面一般有法向应力和切向应力,但流体内任取一个剖面一般有法向应力和切向应力,但切向应力完全是由粘性产生的,而流体的粘性力只有在流动切向应力完全是由粘性产生的,而流体的粘性力只有在流动时才存在,静止流体是不能承受切向应力的。时才存在,静止流体是不能承受切向应力的。1.2 1.2 1.2 1.2 作用在流体微团上力的
24、分类作用在流体微团上力的分类作用在流体微团上力的分类作用在流体微团上力的分类 理想和静止理想和静止流体中的法向应力称为压强流体中的法向应力称为压强 p p(注),其(注),其指向沿着表面的内法线方向,压强的量纲是指向沿着表面的内法线方向,压强的量纲是 力力/长度长度 2 2,单位为(单位为(N/mN/m2 2)或)或 (帕:(帕:p pa a) 在理想(无粘)流体中,不在理想(无粘)流体中,不论流体静止流体静止还是运是运动,尽管一般尽管一般压强强是位置的函数是位置的函数 P=P(x,y,z),P=P(x,y,z), 但在同一点但在同一点处压强强不因受不因受压面方位不同而面方位不同而变化,化,这
25、个个结果称果称为理想流体内理想流体内压强强是是各向同性各向同性的的。( 注:关于有粘性的运注:关于有粘性的运动流体,流体,严格格说来来压强强指的是三个互指的是三个互相垂直方向的法向力的平均相垂直方向的法向力的平均值,加,加负号号 )1.3 理想流体内一点的压强及其各向同性理想流体内一点的压强及其各向同性 如讨论如讨论P P点处压强,在周围取如图微元点处压强,在周围取如图微元4 4面体面体ABCO,ABCO,作用在各作用在各表面的压强如图所示,理想流体无剪切应力,由于表面的压强如图所示,理想流体无剪切应力,由于dxdx、dydy、dz dz 的取法任意,故面的取法任意,故面ABCABC的法线方向
26、的法线方向n n方向也是任意的。方向也是任意的。yxzdxdydzpzpxpypnnABCoP分别沿分别沿 x、y、z 三个方向建立力的平衡关系:三个方向建立力的平衡关系:x方向合外力质量方向合外力质量加速度(加速度(x方向)方向)1.3 理想流体内一点的压强及其各向同性理想流体内一点的压强及其各向同性方程左端等于:方程左端等于:方程右端等于:方程右端等于: 三阶小量三阶小量0 0,由此可得:,由此可得: 因为图中的因为图中的n n方向为任取,故各向同性得证。方向为任取,故各向同性得证。同理可得:同理可得:即:即:1.3 理想流体内一点的压强及其各向同性理想流体内一点的压强及其各向同性 下面我
27、们研究压强在平衡流体中的分布规律。下面我们研究压强在平衡流体中的分布规律。 在平衡流体(静止或相对静止)中取定一笛卡儿坐标系在平衡流体(静止或相对静止)中取定一笛卡儿坐标系 oxyz,坐标轴方位任意。在流体内取定一点,坐标轴方位任意。在流体内取定一点P(x ,y ,z),然后然后以该点为中心点沿坐标轴三个方向取三个长度以该点为中心点沿坐标轴三个方向取三个长度 dx,dy,dz, 划出划出一微元六面体作为分析对象一微元六面体作为分析对象:xyzPdxdydz1.4 1.4 1.4 1.4 流体静平衡微分方程流体静平衡微分方程流体静平衡微分方程流体静平衡微分方程假设:假设:六面体体积:六面体体积:
28、d=dxdydz中心点坐标:中心点坐标: x ,y ,z中心点压强:中心点压强:p = p(x,y ,z)中心点密度:中心点密度: =(x,y,z)中心点中心点处三个方向的三个方向的单位位质量量彻体力体力: fx, fy, fz 微元六面体的表面力可以用中心点微元六面体的表面力可以用中心点处压强强的一的一阶泰勒展开泰勒展开表示表示,如如图为 x 方向方向彻体力,其他方向同理可得。由于流体静止体力,其他方向同理可得。由于流体静止故无剪故无剪应力。力。xyzPdxdydz1.4 1.4 1.4 1.4 流体静平衡微分方程流体静平衡微分方程流体静平衡微分方程流体静平衡微分方程x方向的表面力为:方向的
29、表面力为:x方向的彻体力为:方向的彻体力为:流体静止,则流体静止,则 x 方向的合外力为零:方向的合外力为零:1.4 1.4 流体静平衡微分方程流体静平衡微分方程两两边同除以同除以 d=dxdydz 并令并令 d 趋于趋于零,可得零,可得 x方向平衡方方向平衡方程:程:y, z 方向同理可得:方向同理可得:流体平衡微分方程流体平衡微分方程表明当流体平衡时,若压强在某个方向有梯度的话,必然是表明当流体平衡时,若压强在某个方向有梯度的话,必然是由于彻体力在该方向有分量造成缘故。由于彻体力在该方向有分量造成缘故。1.4 1.4 1.4 1.4 流体静平衡微分方程流体静平衡微分方程流体静平衡微分方程流
30、体静平衡微分方程将上三个式子分别乘以将上三个式子分别乘以dx,dy,dz,然后相加起来,得到:然后相加起来,得到:此式左端是个全微分:此式左端是个全微分:平衡要求右端括号也是某函数平衡要求右端括号也是某函数= =(x,y,z)的全微分)的全微分d d ,称称为彻体力的势函数,或称彻体力有势为彻体力的势函数,或称彻体力有势。1.4 1.4 1.4 1.4 流体静平衡微分方程流体静平衡微分方程流体静平衡微分方程流体静平衡微分方程 这就是就是平衡的必要条件平衡的必要条件,即平衡的必要条件是,即平衡的必要条件是彻体力体力为有有势力,力,换句句话说:只有在:只有在势力作用下流体才可能平衡。力作用下流体才
31、可能平衡。 重力、重力、惯性力和性力和电磁力都磁力都为有有势力。力。根据数学分析,上述括号是全微分要求右端的三个彻体力分根据数学分析,上述括号是全微分要求右端的三个彻体力分量量 fx ,fy ,fz 满足下列关系:满足下列关系:1.4 1.4 1.4 1.4 流体静平衡微分方程流体静平衡微分方程流体静平衡微分方程流体静平衡微分方程则平衡微分方程可写为:则平衡微分方程可写为:当彻体力有势时,当彻体力有势时,设彻体力与势函数的关系为:设彻体力与势函数的关系为:1.4 1.4 1.4 1.4 流体静平衡微分方程流体静平衡微分方程流体静平衡微分方程流体静平衡微分方程如果我如果我们知道某一点的知道某一点
32、的压强强值 pa 和和彻体力体力势函数函数 a 的的值, ,则任何其它点的压强和势函数之间的关系便可表出:任何其它点的压强和势函数之间的关系便可表出:等压面的概念等压面的概念:流场中压强相等的空间点组成的几何曲面:流场中压强相等的空间点组成的几何曲面或平面或平面p=c等压面在等压面上满足:在等压面上满足:上式上式积分后分后为一几何曲面或平面,一几何曲面或平面,该曲面上曲面上满足足 dp=0,上上方程称方程称为等等压面方程面方程或:或:1.4 1.4 1.4 1.4 流体静平衡微分方程流体静平衡微分方程流体静平衡微分方程流体静平衡微分方程等压面方程还可写为:等压面方程还可写为:其中:其中: 为彻
33、体力向量。为彻体力向量。为等压面上的向径为等压面上的向径等压面上式表明:上式表明:等压面处处与彻体力相正交。等压面处处与彻体力相正交。1.4 1.4 1.4 1.4 流体静平衡微分方程流体静平衡微分方程流体静平衡微分方程流体静平衡微分方程例如:例如:1.1.在重力场下静止液体等压面必然为水平面在重力场下静止液体等压面必然为水平面gaa3. 在水平向右加速容器中的液体,合成在水平向右加速容器中的液体,合成的彻体力向左下方,因此等压面是向右的彻体力向左下方,因此等压面是向右倾斜的平面倾斜的平面2. 在加速上升电梯中的液体除了受到重力之外,还受到在加速上升电梯中的液体除了受到重力之外,还受到向下的惯
34、性力,二者合成的彻体力均为向下,因此等压向下的惯性力,二者合成的彻体力均为向下,因此等压面也是水平面面也是水平面1.4 1.4 1.4 1.4 流体静平衡微分方程流体静平衡微分方程流体静平衡微分方程流体静平衡微分方程设封闭容器自由面处压强为设封闭容器自由面处压强为p p0 0,如图建立坐标系,考虑距水,如图建立坐标系,考虑距水平轴高度为平轴高度为 y y 处的某单位质量流体,其彻体力可表示为:处的某单位质量流体,其彻体力可表示为:p0。xygy其中其中g g为重力加速度。为重力加速度。1.5 1.5 1.5 1.5 重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律重力场静止液体中的
35、压强分布规律重力场静止液体中的压强分布规律积分得(注意重度积分得(注意重度g):):此式称为此式称为平衡基本方程平衡基本方程。上式表明,在平衡流体中上式表明,在平衡流体中 p/与与 y 之和为常数。之和为常数。显然,静止显然,静止流体中等压面为水平面流体中等压面为水平面 yc代入平衡微分方程代入平衡微分方程 得:得:1.5 1.5 1.5 1.5 重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律 的几何意的几何意义为:y -代表所研究流体质点在坐标系中所处高度,称为高代表所研究流体质点在坐标系中所处高度,称为高度水头度水头
36、 p/-代表所研究流体质点在真空管中上升高度,称为压力代表所研究流体质点在真空管中上升高度,称为压力水头水头H-由于方程量纲为高度,该积分常数代表上述二高度之由于方程量纲为高度,该积分常数代表上述二高度之和称为总水头,如下图所示:和称为总水头,如下图所示:1.5 1.5 1.5 1.5 重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律对于不同高度上的对于不同高度上的1、2两两点,平衡基本方程可以写点,平衡基本方程可以写为为:表明平衡流体中不同高度处,压力水头与高度水头可以互相表明平衡流体中不同高度处,压力水头与高度水头可以
37、互相转换,但总水头保持不变。转换,但总水头保持不变。y2。11yxp0。yH真空1.5 1.5 1.5 1.5 重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律 的物理意的物理意义为:y -代表单位重量流体的重力势能简称势能代表单位重量流体的重力势能简称势能 p/-代表单位重量流体的压力势能简称压力能代表单位重量流体的压力势能简称压力能H -代表平衡流体中单位重量流体的总能量代表平衡流体中单位重量流体的总能量平衡基本方程平衡基本方程 表明表明:平衡流体中势能与压力能可以互相转换,但总能量保持不变平衡流体中势能与压力能可以互
38、相转换,但总能量保持不变1.5 1.5 1.5 1.5 重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律假设自由液面距水平轴距离为假设自由液面距水平轴距离为H,则自由面与,则自由面与 y 处流体满处流体满足:足:。xygp0yHh其中其中 h = H-y 是所论液体距自由面的深度是所论液体距自由面的深度1.5 1.5 1.5 1.5 重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律式式 表明:表明: 平衡流体中距自由面深平衡流体中距自由面深 h 处的压
39、强来自于两部分的贡献:处的压强来自于两部分的贡献:一是上方单位面积上的液重一是上方单位面积上的液重h,因此压强随距自由面的淹,因此压强随距自由面的淹没深度而线性增加没深度而线性增加二是自由面上的压强贡献二是自由面上的压强贡献 P0,而该贡献处处相同与深度,而该贡献处处相同与深度无关无关当自由面为大气压当自由面为大气压 pa 时,距自由面深时,距自由面深h处的压强可表为:处的压强可表为:1.5 1.5 1.5 1.5 重力场中静止液体中的压强分布规律重力场中静止液体中的压强分布规律重力场中静止液体中的压强分布规律重力场中静止液体中的压强分布规律压强的计量:压强的计量:以真空为压强参考值计量的压强
40、称为绝对压强,如上式以真空为压强参考值计量的压强称为绝对压强,如上式中的中的 p以大气压以大气压 pa为参考压强,高出大气压部分的压强称为相为参考压强,高出大气压部分的压强称为相对压强对压强 pb= p-pa以大气压以大气压 pa为参考压强,不足大气压部分的压强称为真为参考压强,不足大气压部分的压强称为真空度空度 pv= pa-p对于同一个压强值对于同一个压强值 p,其相对压强,其相对压强 pb 与其真空度与其真空度 pv 之间之间的关系为的关系为 pb= -pv 1.5 1.5 1.5 1.5 重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律重力场静
41、止液体中的压强分布规律湿式大气压力计 例:湿式大气压力表的工作原理例:湿式大气压力表的工作原理 有一种大气压力表是用汞柱的高度有一种大气压力表是用汞柱的高度来表达大气压的数值的。一根上端封闭的来表达大气压的数值的。一根上端封闭的长玻璃管和一个盛汞的底盒,玻管竖立。长玻璃管和一个盛汞的底盒,玻管竖立。玻管中有汞与底盒中的汞连通。玻管中汞玻管中有汞与底盒中的汞连通。玻管中汞柱的柱的 上端是真空的上端是真空的 。1.5 1.5 1.5 1.5 重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律按式按式 ,玻管下面与盒中汞面等高的,
42、玻管下面与盒中汞面等高的A处(距上表距上表面的深度面的深度为h)的压强的压强 pA 是是 而而 pA 和大气和大气压 pa 相等,即:相等,即:这样,要,要计算大气算大气压的的值的的话,只要把气,只要把气压表上表上读下来的下来的汞柱高度汞柱高度米乘以汞的重度就是了,大气压的读数往往只说米乘以汞的重度就是了,大气压的读数往往只说汞柱高就行了,一个标准气压是汞柱高就行了,一个标准气压是760毫米汞柱。毫米汞柱。 1.5 1.5 1.5 1.5 重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律重力场静止液体中的压强分布规律1.6 1.6 1.6 1.6 液体
43、的相对平衡问题液体的相对平衡问题液体的相对平衡问题液体的相对平衡问题 在以匀加速运动或匀角速度转动的相对平衡流体中,在以匀加速运动或匀角速度转动的相对平衡流体中,如果将坐标系固连在以匀加速运动或匀角速度转动的容器如果将坐标系固连在以匀加速运动或匀角速度转动的容器上,对液体引入惯性力上,对液体引入惯性力( (达朗伯原理达朗伯原理) ),则同样可以利用平,则同样可以利用平衡微分方程求解问题。衡微分方程求解问题。 如图圆筒作匀角速转动如图圆筒作匀角速转动 ,求其中液体的等压面形状和压强分布求其中液体的等压面形状和压强分布规律。规律。 yzg将坐标系固连于转筒,并建如图坐标系。将坐标系固连于转筒,并建
44、如图坐标系。考虑距底壁为考虑距底壁为 z , ,半径为半径为 r 处单位质量处单位质量流体,会受到一个向下的彻体力大小为流体,会受到一个向下的彻体力大小为 g , ,此外还受到一个向外的惯性力大小此外还受到一个向外的惯性力大小为为2r。在直角坐标系中,三个方向的彻体力可表在直角坐标系中,三个方向的彻体力可表为:为: yxr2r2y2xyzg1.6 1.6 1.6 1.6 液体的相对平衡问题液体的相对平衡问题液体的相对平衡问题液体的相对平衡问题求等压面:由等压面方程求等压面:由等压面方程可得:可得:积分得:积分得:即:即:为旋旋转抛物面族抛物面族yzgH1.6 1.6 1.6 1.6 液体的相对
45、平衡问题液体的相对平衡问题液体的相对平衡问题液体的相对平衡问题特别地,设自由面最低点距坐标原点高特别地,设自由面最低点距坐标原点高 H H 时,可定出自由时,可定出自由面对应的常数:面对应的常数:r = = 0 0 时,时,c c = z = = z = H H,故自由面方程为:故自由面方程为:其中其中 称为超高,即液面高出抛物线顶点的部分。称为超高,即液面高出抛物线顶点的部分。yzgH1.6 1.6 1.6 1.6 液体的相对平衡问题液体的相对平衡问题液体的相对平衡问题液体的相对平衡问题求压强分布:将彻体力代入平衡微分方程方程可得:求压强分布:将彻体力代入平衡微分方程方程可得:积分得:积分得
46、:由自由面条件定出积分常数:由自由面条件定出积分常数:x = y = 0 , z = H 时时, , p = pa,定得积分常数,定得积分常数 c = pa+g H, 带入上述积分结果,得:带入上述积分结果,得:1.6 1.6 1.6 1.6 液体的相对平衡问题液体的相对平衡问题液体的相对平衡问题液体的相对平衡问题如果令方括号等于如果令方括号等于H,则上式可以写为:,则上式可以写为:其中其中 H 即为从自由面向下的淹没深即为从自由面向下的淹没深度,等于超高加上距顶点的深度。度,等于超高加上距顶点的深度。yzgHH上述压强分布表明,在旋转平衡液体中,压强随深度线性上述压强分布表明,在旋转平衡液体
47、中,压强随深度线性增加,随半径呈平方增加。增加,随半径呈平方增加。1.6 1.6 1.6 1.6 液体的相对平衡问题液体的相对平衡问题液体的相对平衡问题液体的相对平衡问题 此外压强分布还与旋转角速度的平方此外压强分布还与旋转角速度的平方 2 成正比,如成正比,如旋转角速度很大,这个彻体力可以很大旋转角速度很大,这个彻体力可以很大 ,从而一定半径处,从而一定半径处的压强会很大。的压强会很大。 由于随半径不同各处的惯性离心力不同,因此合成的由于随半径不同各处的惯性离心力不同,因此合成的惯性力方向随半径而变化,这是旋转平衡液体的等压面成惯性力方向随半径而变化,这是旋转平衡液体的等压面成为抛物面形状的
48、原因。为抛物面形状的原因。1.6 1.6 1.6 1.6 液体的相对平衡问题液体的相对平衡问题液体的相对平衡问题液体的相对平衡问题 旋转液体的特点在在工程中也有很重要的应用,例如旋转液体的特点在在工程中也有很重要的应用,例如旋转铸造或离心铸造等,对于铸造薄壁容器、列车车轮等旋转铸造或离心铸造等,对于铸造薄壁容器、列车车轮等有重要意义。有重要意义。如图为旋转液体压强分布演示:如图为旋转液体压强分布演示:1.6 1.6 1.6 1.6 液体的相对平衡问题液体的相对平衡问题液体的相对平衡问题液体的相对平衡问题1.7 1.7 1.7 1.7 标准大气标准大气标准大气标准大气 无论做飞行器设计,还是做实
49、验研究,都要用到大气无论做飞行器设计,还是做实验研究,都要用到大气的条件,为了便于比较,工程上需要规定一个标准大气。的条件,为了便于比较,工程上需要规定一个标准大气。这个标准是按中纬度地区的平均气象条件定出来的。这样这个标准是按中纬度地区的平均气象条件定出来的。这样做计算时,都依此标准进行计算;做实验时,也都换算成做计算时,都依此标准进行计算;做实验时,也都换算成标准条件下的数据。标准条件下的数据。 标准大气准大气规定在海平面上,大气温度定在海平面上,大气温度为 15 或或 T0 = 288.15K ,压强,压强 p0 = 760 毫米汞柱毫米汞柱 = 101325牛牛/米米2,密度,密度0
50、= 1.225千克千克/米米3 从基准面到从基准面到11 km11 km的高空称为对流层,在对流层内大的高空称为对流层,在对流层内大气密度和温度随高度有明显变化,温度随高度增加而下降,气密度和温度随高度有明显变化,温度随高度增加而下降,高度每增加高度每增加1km1km,温度下降,温度下降 6.5 K6.5 K,即:,即: 从从 11 km 11 km 到到 21km 21km 的高空大气温度基本不变,称为的高空大气温度基本不变,称为同温层或平流层,在同温层内温度保持为同温层或平流层,在同温层内温度保持为 216.5 K216.5 K。普通普通飞机主要在对流层和平流层里活动。飞机主要在对流层和平
51、流层里活动。1.7 1.7 1.7 1.7 标准大气标准大气标准大气标准大气 因大气密度因大气密度是变量且与是变量且与p、T 有关,有关,我我们可用静平衡可用静平衡微分方程把微分方程把压强强随高度下降的随高度下降的规律推律推导出来。出来。y(km)T(k)020406080100120160200240 280 320 360 400 高度大于高度大于 21km 以上时大气温度随高度的变化参见下以上时大气温度随高度的变化参见下图,大气温度随高度变化的原因复杂,主要因素有:地表图,大气温度随高度变化的原因复杂,主要因素有:地表吸收太阳热量、臭氧吸热与电离放热、空气或宇宙尘埃受吸收太阳热量、臭氧吸
52、热与电离放热、空气或宇宙尘埃受短波辐射升温等。短波辐射升温等。1.7 1.7 1.7 1.7 标准大气标准大气标准大气标准大气在如图坐标系中考虑某高度上的单位质在如图坐标系中考虑某高度上的单位质量空气微元,其受到的彻体力分量为:量空气微元,其受到的彻体力分量为:某个高度上的大气压强可以看作是面积为某个高度上的大气压强可以看作是面积为1米米2的一根上端的一根上端无界的空气柱的重量压下来所造成的无界的空气柱的重量压下来所造成的 ,如图,如图代入平衡微分方程可得:代入平衡微分方程可得:1.7 1.7 1.7 1.7 标准大气标准大气标准大气标准大气根据气体状态方程根据气体状态方程 ,密度写为压强和温
53、度的表,密度写为压强和温度的表达即达即 代入平衡微分方程得:代入平衡微分方程得:T 是高度是高度 y 的已知函数,的已知函数,严格说严格说 g 也随也随 y 有所变化,但在有所变化,但在对流层范围内其影响极小,这里就把它当常数看,其值为对流层范围内其影响极小,这里就把它当常数看,其值为9.80665米米/秒秒2。将。将 T 的式子代入,即可分离变量的式子代入,即可分离变量 。1.7 1.7 1.7 1.7 标准大气标准大气标准大气标准大气代入微分方程得:代入微分方程得:下标下标H代表高度为代表高度为H米处的大气参数。米处的大气参数。将对流层的将对流层的积分得:积分得:1.7 1.7 1.7 1
54、.7 标准大气标准大气标准大气标准大气在平流在平流层内,即内,即11km到到20km为止,止, 代入微分方程代入微分方程 并并积分:分:1.7 1.7 1.7 1.7 标准大气标准大气标准大气标准大气根据状态方程可得密度比:根据状态方程可得密度比:根据地面的标准大气参数即可得出对流层某高度根据地面的标准大气参数即可得出对流层某高度H处压强和处压强和密度分布。密度分布。结果得:结果得:下标下标“11”代表代表H=11000米处的参数米处的参数 。其他高度上的压强、密度参数都可以仿此由温度随高度的其他高度上的压强、密度参数都可以仿此由温度随高度的变化关系代入上述微分方程后积分得出。这样计算出来的变
55、化关系代入上述微分方程后积分得出。这样计算出来的大气参数(压强、密度、温度等的总称)列成标准大气表大气参数(压强、密度、温度等的总称)列成标准大气表 ,可供查阅参考。,可供查阅参考。 1.7 1.7 1.7 1.7 标准大气标准大气标准大气标准大气右图是平流层高度范围内右图是平流层高度范围内温度温度T、压强、压强 p、密度、密度和和分子平均自由程随高度分子平均自由程随高度 H 变化的曲线:变化的曲线: 1.7 1.7 1.7 1.7 标准大气标准大气标准大气标准大气本章基本要求:本章基本要求:1. 掌握连续介质假设的概念、意义和条件;掌握连续介质假设的概念、意义和条件;2.了解掌握流体的基本物
56、理属性,尤其是易流性、压缩性和了解掌握流体的基本物理属性,尤其是易流性、压缩性和粘性等属性的物理本质和数学表达;粘性等属性的物理本质和数学表达;3.掌握流体力学中作用力的分类和表达、理想流中压强的定掌握流体力学中作用力的分类和表达、理想流中压强的定义及其特性;义及其特性;4.初步掌握静止流体微团的力学分析方法,重点掌握流体平初步掌握静止流体微团的力学分析方法,重点掌握流体平衡微分方程的表达及其物理意义;衡微分方程的表达及其物理意义;5.在流体平衡微分方程的应用方面,重点掌握重力场静止液在流体平衡微分方程的应用方面,重点掌握重力场静止液体中的压强分布规律和标准大气问题;体中的压强分布规律和标准大
57、气问题; 小测验(小测验(10分钟)分钟) 如图封闭小车内水未装满,顶部压强如图封闭小车内水未装满,顶部压强 p0 为已知,又小为已知,又小车以匀加速度车以匀加速度a向右运动,将坐标系建于小车上时可将容向右运动,将坐标系建于小车上时可将容器内的水看成处于平衡状态,试:器内的水看成处于平衡状态,试:(1)写出单位质量彻体力各分量的表达)写出单位质量彻体力各分量的表达(2)写出液体的等压面微分方程,并求自由面方程)写出液体的等压面微分方程,并求自由面方程 (3)写出平衡微分方程,并求左下角处压强,问左、右)写出平衡微分方程,并求左下角处压强,问左、右下角压强是否相等?为什么?下角压强是否相等?为什么?ap0xyzh