《2413弧弦圆心角市级公开课-》由会员分享,可在线阅读,更多相关《2413弧弦圆心角市级公开课-(21页珍藏版)》请在金锄头文库上搜索。
1、AE BE= =AD BD AC BC CD是直径是直径 CDAB在直径是在直径是20cm的的 中,中, AOB的度数是的度数是,那么弦,那么弦AB的弦心距是的弦心距是. O弓形的弦长为弓形的弦长为6cm,弓形的高为,弓形的高为2cm,则,则这弓形所在的圆的半径为这弓形所在的圆的半径为. 已知已知P为 O 内一点,且内一点,且OP2cm,如果,如果 O的半径是的半径是,那么,那么过P点的最短点的最短的弦等于的弦等于.圆是中心对称图形吗圆是中心对称图形吗? ?它的对称中心在哪里它的对称中心在哪里? ?一、思考一、思考圆是中心对称图形,圆是中心对称图形,它的对称中心是圆心它的对称中心是圆心. .N
2、O把圆把圆O O的半径的半径ONON绕圆心绕圆心O O旋转任意一个角度旋转任意一个角度 ,NON把圆把圆O O的半径的半径ONON绕圆心绕圆心O O旋转任意一个角度旋转任意一个角度 ,NON 把圆把圆O O的半径的半径ONON绕圆心绕圆心O O旋转任意一个角度旋转任意一个角度 ,NON把圆把圆O O的半径的半径ONON绕圆心绕圆心O O旋转任意一个角度旋转任意一个角度 ,NON 定理定理:把圆绕圆心旋转任意一个角度后,仍与原来的圆重合把圆绕圆心旋转任意一个角度后,仍与原来的圆重合。把圆把圆O O的半径的半径ONON绕圆心绕圆心O O旋转任意一个角度旋转任意一个角度 ,由此可以看出,由此可以看出
3、,点点NN仍落在圆上。仍落在圆上。 圆心角圆心角:我们把顶点在圆心的角叫做:我们把顶点在圆心的角叫做圆心角圆心角. .OBA二、概念二、概念如图中所示,如图中所示, AOB就是一个圆心角。就是一个圆心角。 如图,将圆心角如图,将圆心角AOBAOB绕圆心绕圆心O O旋转到旋转到A AOBOB的位置,你能发的位置,你能发现哪些等量关系?为什么?现哪些等量关系?为什么?根据旋转的性质,将圆心角根据旋转的性质,将圆心角AOB绕圆心绕圆心O旋转到旋转到AOB的位置时,显然的位置时,显然AOBAOB,射线,射线OA与与OA重合,重合,OB与与OB重合而同圆的半径相等,重合而同圆的半径相等,OA=OA,OB
4、=OB,从而点,从而点A与与A重合,重合,B与与B重合重合OABOABABAB三、探究三、探究因此,弧因此,弧AB与弧与弧A1B1 重合,重合,AB与与AB重合重合ABA1B1=同样,还可以得到:同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角圆心角_, 所对的弦所对的弦_;在同圆或等圆中,如果两条弦相等,那么他们所对的在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角圆心角_,所对的弧,所对的弧_这样,我们就得到下面的定理:这样,我们就得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,在同圆或等圆中,相等的圆心角所
5、对的弧相等,所对的弦也相等所对的弦也相等相等相等相等相等相等相等相等相等同圆或等圆中,同圆或等圆中,两个圆心角、两两个圆心角、两条弧、两条弦中条弧、两条弦中有一组量相等,有一组量相等,它们所对应的其它们所对应的其余各组量也相余各组量也相等等四、定理四、定理证明:证明:AB=AC AB=ACAB=AC, , ABC ABC 等腰三角形等腰三角形又又ACB=60, ABC是等边三角形,是等边三角形,AB=BC=CA. AOBBOCAOC.ABCO五、例题五、例题例例1 如图在如图在 O中,中,AB=AC ,ACB=60,求证求证:AOB=BOC=AOC. 1.如图,如图,AB、CD是是 O的两条弦
6、的两条弦(1)如果)如果AB=CD,那么,那么_,_(2)如果)如果 = ,那么,那么_,_(3)如果)如果AOB=COD,那么,那么_,_(4)如果)如果AB=CD,OEAB于于E,OFCD于于F,OE与与OF相等吗?为什么?相等吗?为什么?CABDEFOAB=CDAB=CD相相 等等 因为因为ABAB= =CDCD ,所以,所以AOB=AOB=COD.COD. 又因为又因为AO=COAO=CO,BO=DOBO=DO, 所以所以AOB AOB COD.COD. 又因为又因为OEOE 、OFOF是是ABAB与与CDCD对应边上的高,对应边上的高,所以所以 OEOE = = OF.OF.六、练习
7、六、练习CDABABCD=ABCD=2.如图,如图,AB是是 O的直径,的直径, , COD=35,求求AOE的度数的度数AOBCDE解:解:BCCD=DEBCCD=DE1弧弧n1n弧弧把圆心角等分成把圆心角等分成360份份, ,则每一份的圆心则每一份的圆心角是角是1.同时整个圆也被分成了同时整个圆也被分成了360360份份.则每一份这样的弧叫做则每一份这样的弧叫做1的弧的弧.这样这样,1,1的圆心角对着的圆心角对着1 1的弧的弧, , 1 1的弧对着的弧对着1 1的圆心角的圆心角. . n n 的圆心角对着的圆心角对着n n的弧的弧, , n n 的弧对着的弧对着n n的圆心角的圆心角. .
8、性质性质: :弧的度数和它所对圆心角的度数相等弧的度数和它所对圆心角的度数相等. .小结例例2 2:如图,在:如图,在O O中,弦中,弦ABAB所对的劣弧为圆的所对的劣弧为圆的 ,圆的半径为,圆的半径为4cm4cm,求求ABAB的长的长OABCOABCD如图,如图,AC与与BD为为 O的两条互的两条互 相垂直的直径相垂直的直径.求证:求证:AB=BC=CD=DA; AB=BC=CD=DA. AB=BC=CD=DA 证明证明: AC与与BD为为 O的两条互相垂直的直径的两条互相垂直的直径,AOB=BOC=COD=DOA=90AB=BC=CD=DA(圆心角定理圆心角定理)点此继续知识延伸知识延伸弧的度数弧的度数圆心角定理的应用圆心角定理的应用圆心角定理圆心角定理圆心角的定义圆心角的定义学生练习学生练习圆的旋转不变性圆的旋转不变性