《2.2.2向量加法运算及其几何意义》由会员分享,可在线阅读,更多相关《2.2.2向量加法运算及其几何意义(20页珍藏版)》请在金锄头文库上搜索。
1、 2.2.2向量的减法1、向量加法的、向量加法的三角形法则三角形法则baOa a a a a a a abbbbbbbBbaA注意:注意:a+b各向量各向量“首尾相连首尾相连”,和向量由第一个向,和向量由第一个向量的起点指向最后一个向量的终点量的起点指向最后一个向量的终点. .温故知新温故知新baAa a a a a a a abbbBbaDaCba+b作法作法:(1)在平面内任取一点在平面内任取一点A;(2)以以点点A为起点为起点以向量以向量a、b为邻边作平行为邻边作平行四边形四边形ABCD.即即ADBCa,AB=DC=b ;(3)则以)则以点点A为起点为起点的对角线的对角线ACa+b.2、
2、向量加法的、向量加法的平行四边形法则平行四边形法则注意起点相同注意起点相同. .共线向量不适用共线向量不适用走进新课走进新课已知:两个已知:两个力的合力为力的合力为求:另一个力求:另一个力 其中一个力为其中一个力为减去一个向量等于加上这个向量的相反向量说明:说明:、与、与长度相等、方向相反的向量,长度相等、方向相反的向量,叫做叫做的相反向量的相反向量、零向量的相反向量仍是零向量、零向量的相反向量仍是零向量、任一向量和它相反向量的和是零向量、任一向量和它相反向量的和是零向量练习CD二、向量减法的三角形法则二、向量减法的三角形法则OABab. 注意:注意: 1、两个向量相减,则表示两个向量起点的字
3、母必须相同 2、差向量的终点指向被减向量的终点(1)(2)OABABO向量的减法向量的减法特殊情况特殊情况1.共线同向共线同向2.共线反向共线反向例:例:如图,已知向量如图,已知向量a,b,c,d,求作向求作向量量a-b,c-d.例2:选择题DC例3:如图,平行四边形ABCD,AB=a,AD=b,用a、b表示向量AC、DB。ADBCab解:有向量加法的平行四边形法则,解:有向量加法的平行四边形法则,得得由向量的减法可得,由向量的减法可得,练习1(1)(2)(3)(4)练习2Come on!(一一)知识知识1理解相反向量的概念理解相反向量的概念2. 2. 理解向量减法的定义,理解向量减法的定义,3.正确熟练地掌握向量减法的三角形法则正确熟练地掌握向量减法的三角形法则小结小结:(二二)重点重点 重点:向量减法的定义、向量减法的三角形法则重点:向量减法的定义、向量减法的三角形法则作作业:1.P91 4(1).(3).(5).(7)2.看教材P85-863.世纪金榜120oADBCO120oADBCOreturn数学使人聪颖数学使人聪颖 数学使人严谨数学使人严谨 数学使人深刻数学使人深刻 数学使人缜密数学使人缜密 数学使人坚数学使人坚毅毅 数学使人智慧数学使人智慧