《高一数学必修1总复习ppt课件》由会员分享,可在线阅读,更多相关《高一数学必修1总复习ppt课件(61页珍藏版)》请在金锄头文库上搜索。
1、严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。第一章第一章 集合与函数概念集合与函数概念第二章第二章 基本初等函数基本初等函数第三章第三章 函数应用函数应用严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。集合集合基本关系基本关系含义与表示含义与表示基本运算基本运算列举法列举法 描述法描述法包含包含相等相等并集并集交集交集 补集补集图示法图示法 一、知识结构一、知识结构一、集合的含义与表示1、集合:把研究对象称为元素,把一些元素组成的总体叫做集合2、元素与集合的关系:
2、3、元素的特性:确定性、互异性、无序性确定性、互异性、无序性(一)集合的含义严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。(1)(1)确定性确定性确定性确定性:集合中的元素必须是确定的:集合中的元素必须是确定的:集合中的元素必须是确定的:集合中的元素必须是确定的. .1.集合集合中中元素的性质元素的性质:(2)(2)互异性互异性互异性互异性:一个给定的集合中的元素是互不相同的:一个给定的集合中的元素是互不相同的:一个给定的集合中的元素是互不相同的:一个给定的集合中的元素是互不相同的. .(3)(3)无序性无序性无序性无序性:集合
3、中的元素是没有先后顺序的:集合中的元素是没有先后顺序的:集合中的元素是没有先后顺序的:集合中的元素是没有先后顺序的. .自然数集(非负整数集):记作自然数集(非负整数集):记作 N 正整数集:记作正整数集:记作N* *或或N+ + 整数集:记作整数集:记作 Z有理数集:记作有理数集:记作 Q实数集:记作实数集:记作 R2.常用的数集及其记法常用的数集及其记法(含(含(含(含0 0)(不含(不含(不含(不含0 0)exex1.1.集合集合A=1,0,x,A=1,0,x,且且x x2 2A,A,则则x x -1(二)集合的表示1、列举法:把集合中的元素一一列举出来,并放在 内2、描述法:用文字或公
4、式等描述出元素的特性,并放在x| 内3.图示法 Venn图,数轴二、集合间的基本关系1、子集:对于两个集合A,B如果集合A中的任何一个元素都是集合B的元素,我们称A为B的子集. 若集合中元素有n个,则其子集个数为 真子集个数为 非空真子集个数为2、集合相等:3、空集:规定空集是任何集合的子集,是任何非空集合的真子集2n2n-12n-2严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。子集:子集:A B任意任意xA xB.真子集:真子集: A B xA,xB,但存在,但存在x0B且且x0 A.集合相等:集合相等:AB A B且且B A
5、.空集:空集:.性质:性质:A,若,若A非空,非空, 则则A. A A. A B,B CA C.3.集合集合间的关系间的关系:严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。子集、真子集个数:子集、真子集个数: 一般地,集合一般地,集合A含有含有n个元素,个元素,A的的非空真子集非空真子集 个个.则则A的子集共有的子集共有 个个;A的真子集共有的真子集共有 个个;A的的非空子集非空子集 个个;2n2n12n-12n-2严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。1
6、.并集并集: B A 2.交集交集: B A 3.全集全集:一一般般地地,如如果果一一个个集集合合含含有有我我们们所所研研究究问问题题中中涉涉及及的的所有所有所有所有元素元素,那么就称这个集合为那么就称这个集合为全集全集全集全集. .用用U表示表示4.补集补集:UAUAUA=x|x U,且x AUA三、集合的并集、交集、全集、补集严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。0或或2题型示例考查集合的含义严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。考查集合之间的
7、关系严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。函数定义域奇偶性图象值域单调性函数的复习主要抓住两条主线函数的复习主要抓住两条主线 1、函数的概念及其有关性质。、函数的概念及其有关性质。2、几种初等函数的具体性质、几种初等函数的具体性质。二次函数二次函数指数函数指数函数对数函数对数函数反比例函数反比例函数一次函数一次函数幂函数幂函数严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。函数函数函数的概念函数的概念函数的基本性质函数的基本性质函数的单调性函数的单调性函数的
8、最值函数的最值函数的奇偶性函数的奇偶性函数知识结构函数知识结构 严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。BCx1x2x3x4x5y1y2y3y4y5y6A函数的三要素:定义域,值域,对应法则函数的三要素:定义域,值域,对应法则A.BA.B是两个非空的数集是两个非空的数集, ,如果如果按照某种对应法则按照某种对应法则f f,对于对于集合集合A A中的每一个元素中的每一个元素x x,在在集合集合B B中都有唯一的元素中都有唯一的元素y y和和它对应,这样的对应叫做从它对应,这样的对应叫做从A A到到B B的一个函数。的一个函数
9、。一、函数的概念:一、函数的概念:思考:函数值域C与集合B的关系严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。二、映射的概念设A,B是两个非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y于之对应,那么就称对应f:AB为集合A到集合B的一个映射映射是函数的一种推广,本质是:任一对唯一严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。使函数有意义的使函数有意义的x x的取值范围。的取值范围。求求求求定定定定义义义义域
10、域域域的的的的主主主主要要要要依依依依据据据据1 1、分式的分母不为零、分式的分母不为零. .2 2、偶次方根的被开方数不小于零、偶次方根的被开方数不小于零. .3 3、零次幂的底数不为零、零次幂的底数不为零. .4 4、对数函数的真数大于零、对数函数的真数大于零. .5 5、指、对数函数的底数大于零且不为、指、对数函数的底数大于零且不为1.1.6、实际问题中函数的定义域、实际问题中函数的定义域严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。(一)函数的定义域(一)函数的定义域1、具体函数的定义域、具体函数的定义域严格执行突发事件
11、上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。练习:练习:严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。 2、抽象函数的定义域、抽象函数的定义域1)已知函数)已知函数y=f(x)的定义域是的定义域是1,3,求求f(2x-1)的定义域的定义域2)已知函数)已知函数y=f(x)的定义域是的定义域是0,5),求求g(x)=f(x-1)- f(x+1)的定义域的定义域3)3)严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。严
12、格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。一个函数的三要素为:定义域、对应关系和值域,值域是由对应法则和定义域决定的判断两个函数相等的方法:1、定义域是否相等(定义域不同的函数,不是相同的函数)2、对应法则是否一致(对应关系不同,两个函数也不同)严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。例、下列函数中哪个与函数y=x相等严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。二、函数的表示法二、函数的表
13、示法1、解、解 析析 法法 2、列、列 表表 法法 3、图、图 象象 法法 严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。例例10求下列函数的解析式求下列函数的解析式待定系数法换元法严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。三、三、函数的性质:单调性函数的性质:单调性如果对于定义域如果对于定义域I I内内某个区间某个区间D上的上的任意任意两个自变量的值两个自变量的值 x1 1 、x2 2 ,当当 x1 1x2 2时,都有时,都有f( (x1 1) )f( (x
14、2 2) ),那么,那么就说函数就说函数f( (x) )在区间在区间D上是上是增增函数函数. .区间区间D叫做函数的叫做函数的增区间增区间。定义定义一般地,设函数一般地,设函数 f( (x) )的定义域为的定义域为I I:如果对于定义域如果对于定义域I I内内某个区间某个区间D上的上的任意任意两个自变量的值两个自变量的值 x1 1 、x2 2 ,当当 x1 1x2 2时,都有时,都有f( (x1 1) )f( (x2 2) ),那么那么就说函数就说函数f( (x) )在区间在区间D上是上是减减函数函数. .xoyy=f(x)x1x2f(x2)f(x1)xoyx1x2f(x1)f(x2)y=f(
15、x)3 3. .(定义法定义法)证明函数单调性的步骤证明函数单调性的步骤: :设值设值判断差符号判断差符号作差变形作差变形下结论下结论严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。反比例函数反比例函数反比例函数反比例函数 1、定义域、定义域 .2、值域、值域 4、图象、图象k0k0a0,r,sQ); (ar)s=ars (a0,r,sQ); (ab)r=ar br (a0,b0,rQ).指数幂的运算严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。1. 对数的运算性数
16、的运算性质:(2)(3)如果如果 a 0,a 1,M 0, N 0 有:有:指数函数与对数函数指数函数与对数函数函数函数y = ax ( a0 且且 a1 )y = log a x ( a0 且且 a1 )图象象a 10 a 1a 10 a 1性性质定定义域域定定义域域值域域值域域定点定点定点定点xy01xy011xyo1xyo在在R上是上是增增函数函数在在R上是上是减减函数函数在在( 0 , + )( 0 , + )上是上是增增函数函数在在( 0 , + )( 0 , + )上是上是减减函数函数(1, 0)(0, 1)单调性单调性相同相同(0, 1)(0, 1)(1, 0)(1, 0)指数函
17、数与对数函数指数函数与对数函数B(1)(2)(3)(4)OXy总结:在第一象限,越靠近y轴,底数就越大指数函数与对数函数指数函数与对数函数若图象若图象C1,C2,C3,C4对应对应 y=logax, y=logbx, y=logcx, y=logdx,则(则( ) A.0ab1cd B.0ba1dc C.0dc1ba D.0cd1abxyC1C2C3C4o1D规律:在规律:在x轴轴上方图象自左上方图象自左向右底数越来向右底数越来越大!越大!严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。在同一平面直角坐标系内作出幂函数在同一平面直
18、角坐标系内作出幂函数y=x,y=x2,y=x3,y=x1/2,y=x-1的图象:的图象:y=x,y=x2y=x3y=x1/2y=x-1严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。X y110y=x-1y=x-2a 0严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。三、幂函数的性质三、幂函数的性质: :.所有的幂函数在所有的幂函数在(0,+)(0,+)都有定义都有定义, ,并且函并且函数图象都通过点数图象都通过点(1,1(1,1);幂函数的定义域、奇偶性、单调性,因
19、函数式幂函数的定义域、奇偶性、单调性,因函数式中中的不同而各异的不同而各异. .如果如果0,0,则幂函数则幂函数在在(0,+)(0,+)上为减函数。上为减函数。 0,0,则幂函数则幂函数 在在(0,+)(0,+)上为增函数上为增函数; ;1012.2.当当为奇数时为奇数时, ,幂函数为奇函数幂函数为奇函数, , 当当为偶数时为偶数时, ,幂函数为偶函数幂函数为偶函数. . 对于函数对于函数y=f(x),y=f(x),我们把使我们把使f(x)=0f(x)=0的实数的实数x x叫做函数叫做函数y=f(x)y=f(x)的零点。的零点。零点是一个点吗?第三章函数与方程严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。若f(x)是单调函数严格执行突发事件上报制度、校外活动报批制度等相关规章制度。做到及时发现、制止、汇报并处理各类违纪行为或突发事件。函数与方程?函数在区间(a,b)上有零点,则f(a)f(b)0?函数在区间(a,b)上有f(a)f(b)10a10a1R+在(在(0, )递增递增在(在(0, )递减递减yxoyxo11