《时间同步和时钟同步原理及配置方法介绍》由会员分享,可在线阅读,更多相关《时间同步和时钟同步原理及配置方法介绍(33页珍藏版)》请在金锄头文库上搜索。
1、11GPONGPON系统系统1588V21588V2时间同步功能和时时间同步功能和时钟同步功能简介钟同步功能简介吴晓钟吴晓钟22同步概念同步概念1588v21588v2时钟模型时钟模型 1588v21588v2同步实现机制同步实现机制时间同步网管参数配置时间同步网管参数配置1588v21588v2同步典型应用方案同步典型应用方案提纲提纲33时间同步和频率同步同步概念同步概念上图给出了时间同步与频率同步的区别,如果两个表(WatchA与WatchB)每时每刻的时间都保持一致,这个状态叫时间同步(PhaseSynchronization);如果两个表的时间不一样,但是保持一个恒定的差,比如6小时,
2、那么这个状态称为频率同步(FrequencySynchronization)。44同步概念1.时间同步几种方式同步1PPS+TOD接口(1PPS为秒脉冲,TOD:日时间精确到秒)1588V2协议同步1588V2+SYNCE(时钟同步)混合方式2.时钟同步几种方式同步以太网SYNCE1588V2恢复出时钟55 在IEEE1588v2建议中定义了频率同步技术。该技术通过从节点与主节点快速交换报文,获取时间戳。再计算相邻同步周期时间戳(t2-t1)值的相对差值来计算同步周期内从时钟相对主时钟频率的漂移值,通过这个值调整本地时钟,从而实现频率恢复。在国内1588v2同步技术应用早期,部分传送设备不具备
3、SyncE这种基于硬件的频率恢复功能,有较多采取1588v2频率恢复应用场景。到现在传送设备大多采取了SyncE这种基于硬件的频率恢复技术,1588v2频率恢复技术成为备用方案。同步概念概念66同步概念时间同步和时钟同步有何区别?两者概念相互独立时钟同步可服务于时间同步1588V2时间同步又可恢复出频率实现时钟同步77同步概念同步概念1588v21588v2时钟模型时钟模型 1588v21588v2同步实现机制同步实现机制时间同步网管参数配置时间同步网管参数配置1588v21588v2同步典型应用方案同步典型应用方案提纲提纲881588V21588V2时钟模型时钟模型时钟模型普通时钟边界时钟透
4、传时钟(Ordinaryclock)(Boundaryclock)(Transparentclock)E2E透传时钟P2P透传时钟( End-to-end transparent clock ) ( Peer-to-peer transparent clock )991588V21588V2时钟模型时钟模型普通普通时钟时钟 OC(Ordinary Clock)是网络始端或终端设备,只有一个1588 端口,该端口作为Slave 或Master。 边界时钟边界时钟 BC(Boundary Clock)是网络中间节点时钟设备,该设备有多个1588 端口。其中一个 端口可作为Slave,设备系统时钟的
5、频率和时间同步于上一级设备,其他端口作为Master,可以实现逐级的时间传递。10101588V21588V2时钟模型时钟模型透明时钟透明时钟TC TC(Transparent Clock)是网络中间节点时钟设备,其可分为E2E TC(End to End TC) 和P2P TC(Peer to Peer TC)两种 : E2E只测量驻留时间; P2P测量驻留时间、链路延时。从钟表T1correctionField=correctionField+TR1T2主钟表各节点自行测量链路时延correctionField=correctionField+TD1correctionField=corr
6、ectionField+TD2correctionField=correctionField+TR2correctionField=correctionField+TD3correctionField=correctionField+TR3correctionField=correctionField+TR4correctionField=correctionField+TD4TDi:上联线路的延时,通过peer延时测量机制获得Tri:各中间节点的驻留时间11111588V21588V2时钟模型时钟模型PON系统的1588V2时钟模型?总体来看OLT+ONU为BC时钟模型单独来看OLT或者ON
7、U其时钟模型都为OC1212同步概念同步概念1588v21588v2时钟模型时钟模型 1588v21588v2同步实现机制同步实现机制时间同步网管参数配置时间同步网管参数配置1588v21588v2同步典型应用方案同步典型应用方案提纲提纲1313时间同步实现机制时间同步实现机制分为带内(1588协议接口)和带外(1PPS+TOD接口)两种接口。带外(1PPS+TOD接口)接口的帧格式规范遵从“中国移动TD无线系统高精度时间同步技术规范1ppsTOD时间接口规范”的要求。带内(1588协议接口,以太网业务接口)接口通过交换1588报文,并实现1588协议栈。1414时间同步实现时间同步实现机制机
8、制-1PPS+TOD-1PPS+TOD1)1pps:秒脉冲信息,脉冲的上升沿标记一秒的开始;2)TOD:绝对时间信息;按照GPS时钟格式表示,记时起点是1980年1月1日00:00:00;TOD消息分为时间信息消息和时间状态消息两种。TOD帧格式定义:帧头消息头消息域长度载荷域校验域23 BYTES2字节2字节2字节16字节1字节0x4d0x430x010x00101515时间同步实现机制时间同步实现机制-1PPS+TOD-1PPS+TODTOD信息波特率默认为9600,无奇偶校验,1个起始位(用低电平表示),1个停止位(用高电平表示),空闲帧为高电平,8个数据位,应在1PPS上升沿1ms后开
9、始传送TOD信息,并在500ms内传完,此TOD消息标示当前1PPS上升沿时间。TOD协议报文发送频率为每秒1次。对于1PPS秒脉冲,采用上升沿作为准时沿,上升时间应小于50ns,脉宽应为20ms200ms。1616时间同步实现时间同步实现机制机制-1588V2-1588V2协议协议1588协议报文包括:设备应支持事件报文和通用报文等两类 PTP 协议报文。 事件报文:在离开和到达一台设备时必须打时标(记录本地时间) (1) Sync (1) Sync (2) Delay_Req (2) Delay_Req (3) Pdelay_Req (4) Pdelay_Resp 通用报文(General
10、 报文):不需要打时间戳 (1) Announce (1) Announce (2) Follow_Up (3) Delay_Resp (3) Delay_Resp (4) Pdelay_Resp_Follow_Up (5) Management (可选,本规范暂不作规定具体报文内容) (6) Signaling (可选,本规范暂不作规定具体报文内容) 1717时间同步实现时间同步实现机制机制-1588V21588V2协议协议Sync、Follow_Up、Delay_Req、Delay_Resp用于产生和传递时序信息,这种时序信息用来同步普通时钟和边界时钟。Pdelay_Req、Pdelay_
11、Resp、Pdelay_Resp_Follow_Up用来测量两个时钟端口之间的路径延迟,测得的路径延迟用于校正Sync与Follow_Up消息中的时间信息。Announce消息用于建立同步分层结构Management消息用于查询和更新时钟所维护的PTP数据集。Signaling消息用于其他的目的,例如在主从之间协调单播消息的发送频率。1818时间同步实现机制时间同步实现机制-1588V2-1588V2协议协议假设主从时钟之间的链路延迟是对称的,从时钟根据已知的4个时间值,可以计算出与主时钟的时间偏移量和链路延迟。offset:slave_timemaster_time(时间偏差)t2-t1=D
12、elay+offsett4-t3=Delay-offsetM与S的时间偏移量(假设Tms=Tsm):Offset=(t2-t1)-(t4-t3)/2M与S之间的时间延迟:Delay=(t2-t1)+(t4-t3)/21919时间同步实现机制时间同步实现机制-BMC-BMC算法算法最优时间源算法BMC(BestMasterClock)是1588时间同步的应用层技术,能够自动选择时间同步网中的最优时间源,自动选择同步路径,在时间源故障和链路故障时,自动实现时间源和同步路径的切换。选择同步时钟和路径采集源时钟信息决断端口工作状态发布时钟信息MasterClockSlaveClockAnnounce报
13、文Priority1ClockClassClockAccuracyPriority2StepsMovedMasterSlavePassive2020同步概念同步概念1588v21588v2时钟模型时钟模型 1588v21588v2同步实现机制同步实现机制时间同步网管参数配置时间同步网管参数配置1588v21588v2同步典型应用方案同步典型应用方案提纲提纲2121时间同步网管参数时间同步网管参数配置(配置(TIMATIMA盘盘) )同步参数配置说明:1.PTP模式:一般而言配置成BMC2.时间源选择:当源为1588V2配置为PORT,源为1PPS+TOD配置为TOD3.时钟模型配置:OC/BC
14、4.频率同步:时间同步方式为1588V2+SYCE配置为去使能,同步方式为纯1588V2则此处配置为使能。5.时间域:和上游MASTER配置保持一致。2222时间同步网管参数时间同步网管参数配置(配置(TIMA)TIMA)1PPS+TOD接口配置:延时补偿作用TOD输入接口:TIMA单盘面板1PPS输入的延时补偿TOD输出接口:TIMA单盘面板1PPS输出的延时补偿系统输出接口:TIMA盘往线卡侧发送的1PPS延时补偿如测试的时间同步结果为+52ns,则系统输出接口处配置成+52ns2323时间同步网管参数时间同步网管参数配置(配置(TIMA)TIMA)端口基本配置(不常用)主要作用:配置15
15、88V2方式的测量机制、消息模式、不对称时延补偿测量机制:保留缺省值E2E消息模式:保留缺省值一步不对时延属性:一般情况保留默认值,如果需要进行延时补偿才配置。2424时间同步网管参数时间同步网管参数配置(配置(TIMA)TIMA)报文传输设置主要作用:主要配置1588V2协议发协议报文的相关参数常用配置参数:报文封装格式:可选配为EthernetII或者UDPOVERIPV4,和上游设备保持一致通信模式:目前只能配置成组播VLAN标签:可选配为使能/去使能,根据协议报文是否带VLAN配置VLANID:VLAN号,使能时有效2525时钟同步时钟同步网管参数网管参数配置(配置(TIMA)TIMA
16、)时钟基本配置(常用)主要作用:配置时钟的工作模式,和相关门限值常用配置参数:时钟工作模式:可配置为自动/保持/自由振荡,一般配置为自动时钟使能选择:根据应用场景配置,需根据ESMC协议选源需要配置为使能;外时钟SSM门限:保留默认值即可(超过这个门限值才会进行导出)系统时钟SSM门限:保留默认值(超过这个门限值才会锁定)时钟等待恢复时间:源恢复后等Nmin然后再去锁定,使能后才有效2626时钟同步时钟同步网管参数网管参数配置(配置(TIMA)TIMA)定时源时钟输入配置(常用):主要作用:配置时钟源常用配置参数:时钟源名称:保含2路外时钟,N路线路钟输入(SYNCE)QL选择:指定这一路时钟
17、的时钟精度;等待恢复定时开关:保留缺省值即可。时钟优先级:人为制定时钟优先级,时钟同步去使能时,依靠此值选源。2727时钟同步时钟同步网管参数网管参数配置(配置(TIMA)TIMA)输出时钟源QL值、时钟导出配置:作用:主要是配置从TIMA单盘导出的外时钟的相关特性2828时间同步时间同步网管参数网管参数配置(配置(ONU)ONU)本地时钟配置:作用:主要配置IEEE1588V2MASTER相关参数主要参数说明:1.时钟ID1、时钟ID2:PTP时钟ID(8字节),配置为本地MAC(3、4字节插入0xFF、0xFE),如:AABBCCFFFE112233;2.优先级1:用于BMC,测试配置为小
18、于128的值;3.时钟等级:用于BMC,配置为6;4.时钟精度:用于BMC,测试配置为25ns;5.优先级2:用于BMC,配置为小于128的值;6.时钟类型:配置为GPS或PTP;7.时间域:配置与测试仪表的时间域相同即可;8.不对称时延补偿:属性可配置正/负补偿,补偿值配置为0100000ns整数。2929时间同步网管参数配置时间同步网管参数配置u单步时钟时,将只使用SyncMessage报文来计算主从路径延迟,而不需要FollowUpMessage来携带SyncMessage报文的发出时间戳,SyncMessage报文的发出时间戳(EgressTimeStamp)会夹带在SyncMessa
19、ge报文自己的originTimeStamp字段中u双步时钟时,需要FollowUpMessage来携带SyncMessage报文的发出时间戳,SyncMessage报文的发出时间戳(EgressTimeStamp)会夹带在FollowUpMessage报文的preciseOriginTimeStamp字段中3030同步概念同步概念1588v21588v2时钟模型时钟模型 1588v21588v2同步实现机制同步实现机制时间同步网管参数配置时间同步网管参数配置1588v21588v2同步典型应用方案同步典型应用方案提纲提纲31311588v21588v2同步典型应用方案同步典型应用方案3232
20、1588v21588v2同步典型应用方案同步典型应用方案1.时间盘信号发送和接收:直接从面板引入外部GPS源获取1PPS+TOD信号,并向面板和背板输出1PPS+TOD信号。通过IEEE1588以太网接口接收和发送PTP报文,端口实现slave功能。2.GPON线卡信号发送和接收:接收时间盘输出的8K时钟(差分时钟线)和1PPS+TOD信号。通过PON系统协议发送1PPS+TOD信号给ONU。3.ONU信号发送和接收:接收并解析PON线卡输出的1PPS+TOD信号。输出1PPS+TOD信号到TOD口。通过IEEE1588以太网接口接收和发送PTP报文,端口实现master功能。3333THANKS!