空间几体的三视图和直观图

上传人:pu****.1 文档编号:589902515 上传时间:2024-09-12 格式:PPT 页数:56 大小:876KB
返回 下载 相关 举报
空间几体的三视图和直观图_第1页
第1页 / 共56页
空间几体的三视图和直观图_第2页
第2页 / 共56页
空间几体的三视图和直观图_第3页
第3页 / 共56页
空间几体的三视图和直观图_第4页
第4页 / 共56页
空间几体的三视图和直观图_第5页
第5页 / 共56页
点击查看更多>>
资源描述

《空间几体的三视图和直观图》由会员分享,可在线阅读,更多相关《空间几体的三视图和直观图(56页珍藏版)》请在金锄头文库上搜索。

1、问题提出问题提出 1. 1.照相、绘画之所以有空间视觉效果,照相、绘画之所以有空间视觉效果,主要处决于线条、明暗和色彩,其中对主要处决于线条、明暗和色彩,其中对线条画法的基本原理是一个几何问题,线条画法的基本原理是一个几何问题,我们需要学习这方面的知识我们需要学习这方面的知识. . 2. 2.在建筑、机械等工程中,需要用在建筑、机械等工程中,需要用平面图形反映空间几何体的形状和大小,平面图形反映空间几何体的形状和大小,在作图技术上这也是一个几何问题,你在作图技术上这也是一个几何问题,你想知道这方面的基础知识吗?想知道这方面的基础知识吗?知识探究(一):知识探究(一):中心投影与平行投影中心投影

2、与平行投影 光是直线传播的,一个不透明物体在光是直线传播的,一个不透明物体在光的照射下,在物体后面的屏幕上会留光的照射下,在物体后面的屏幕上会留下这个物体的影子,这种现象叫做下这个物体的影子,这种现象叫做投影投影. .其中的光线叫做其中的光线叫做投影线投影线,留下物体影子,留下物体影子的屏幕叫做的屏幕叫做投影面投影面. .思考思考1:1:不同的光源发出的光线是有差异不同的光源发出的光线是有差异的,其中灯泡发出的光线与手电筒发出的,其中灯泡发出的光线与手电筒发出的光线有什么不同?的光线有什么不同?思考思考2:2:我们把光由一点向外散射形成的我们把光由一点向外散射形成的投影叫做投影叫做中心投影中心

3、投影,把在一束平行光线,把在一束平行光线照射下形成的投影叫做照射下形成的投影叫做平行投影平行投影,那么,那么用灯泡照射物体和用手电筒照射物体形用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?成的投影分别是哪种投影? 中心投影中心投影平行投影平行投影思考思考3:3:用灯泡照射一个与投影面平行的用灯泡照射一个与投影面平行的不透明物体,在投影面上形成的影子与不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物原物体的形状、大小有什么关系?当物体与灯泡的距离发生变化时,影子的大体与灯泡的距离发生变化时,影子的大小会有什么不同?小会有什么不同?思考思考4:4:用手电筒照射一个与

4、投影面平行用手电筒照射一个与投影面平行的不透明物体,在投影面上形成的影子的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当与原物体的形状、大小有什么关系?当物体与手电筒的距离发生变化时,影子物体与手电筒的距离发生变化时,影子的大小会有变化吗?的大小会有变化吗?思考思考5:5:在平行投影中,投影线正对着投在平行投影中,投影线正对着投影面时叫做影面时叫做正投影正投影,否则叫做,否则叫做斜投影斜投影. .一一个与投影面平行的平面图形,在正投影个与投影面平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化和斜投影下的形状、大小是否发生变化?思考思考6:6:一个与投影面不平行的平

5、面图形,一个与投影面不平行的平面图形,在正投影和斜投影下的形状、大小是否在正投影和斜投影下的形状、大小是否发生变化?发生变化?知识探究(二):柱、锥、台、球的三视图知识探究(二):柱、锥、台、球的三视图 把一个空间几何体投影到一个平面把一个空间几何体投影到一个平面上,可以获得一个平面图形上,可以获得一个平面图形. .从多个角度从多个角度进行投影就能较好地把握几何体的形状进行投影就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、和大小,通常选择三种正投影,即正面、侧面和上面,并给出下列概念:侧面和上面,并给出下列概念: (1 1)光线从几何体的前面向后面正投影)光线从几何体的前面向后

6、面正投影得到的投影图,叫做几何体的得到的投影图,叫做几何体的正视图正视图; (2 2)光线从几何体的左面向右面正投影)光线从几何体的左面向右面正投影得到的投影图,叫做几何体的得到的投影图,叫做几何体的侧视图侧视图;(3 3)光线从几何体的上面向下面正投影)光线从几何体的上面向下面正投影得到的投影图,叫做几何体的得到的投影图,叫做几何体的俯视图;俯视图; (4 4)几何体的正视图、侧视图、俯视图)几何体的正视图、侧视图、俯视图统称为几何体的统称为几何体的三视图三视图. .思考思考1:1:正视图、侧视图、俯视图分别是正视图、侧视图、俯视图分别是从几何体的哪三个角度观察得到的几何从几何体的哪三个角度

7、观察得到的几何体的正投影图?它们都是平面图形还是体的正投影图?它们都是平面图形还是空间图形?空间图形? 思考思考2:2:如图,设长方体的长、宽、高分如图,设长方体的长、宽、高分别为别为a a、b b、c c ,那么其三视图分别是什,那么其三视图分别是什么?么?a ab bc cabc正视图正视图俯视图俯视图侧侧视视图图正视图正视图俯视图俯视图侧侧视视图图aabbcc思考思考3:3:圆柱、圆锥、圆台的三视图分别圆柱、圆锥、圆台的三视图分别是什么?是什么?正视图正视图侧视图侧视图俯视图俯视图俯视图俯视图正视图正视图侧视图侧视图俯视图俯视图正视图正视图侧视图侧视图思考思考4:4:一般地,一个几何体的

8、正视图、一般地,一个几何体的正视图、侧视图和俯视图的长度、宽度和高度有侧视图和俯视图的长度、宽度和高度有什么关系?什么关系?正侧等高正侧等高,正俯等长正俯等长,侧俯等宽侧俯等宽.正视图正视图俯视图俯视图侧侧视视图图aabbcca ab bc c思考思考5:5:球的三视图是什么?下列三视图球的三视图是什么?下列三视图表示一个什么几何体?表示一个什么几何体?俯视图俯视图正视图正视图侧视图侧视图理论迁移理论迁移 例例 如图是一个倒置的四棱柱的两种如图是一个倒置的四棱柱的两种摆放,试分别画出其三视图,并比较它摆放,试分别画出其三视图,并比较它们的异同们的异同. .正视正视正视正视正视图正视图侧视图侧视

9、图俯视图俯视图正视正视正视图正视图侧视图侧视图俯视图俯视图正视正视能看见的轮廓线和棱用能看见的轮廓线和棱用实线实线表示,表示,不能看见的轮廓线和棱用不能看见的轮廓线和棱用虚线虚线表示表示. 作业作业: :P P1515练习:练习:1 1,2 2,3.3.1.2 1.2 空间几何体的三视图和直观图空间几何体的三视图和直观图第二课时第二课时 简单组合体的三视图简单组合体的三视图 1.1.柱、锥、台、球是最基本、最简单的柱、锥、台、球是最基本、最简单的几何体,由这些几何体可以组成各种各几何体,由这些几何体可以组成各种各样的组合体,怎样画简单组合体的三视样的组合体,怎样画简单组合体的三视图就成为研究的

10、课题图就成为研究的课题. .问题提出问题提出2.2.另一方面,将几何体的三视图还原几另一方面,将几何体的三视图还原几何体的结构特征,也是我们需要研究的何体的结构特征,也是我们需要研究的问题问题. .知识探究(一):知识探究(一):画简单几何体的三视图画简单几何体的三视图 思考思考1:1:在简单组合体中,从正视、侧视、在简单组合体中,从正视、侧视、俯视等角度观察,有些轮廓线和棱能看俯视等角度观察,有些轮廓线和棱能看见,有些轮廓线和棱不能看见,在画三见,有些轮廓线和棱不能看见,在画三视图时怎么处理?视图时怎么处理?思考思考2:2:如图所示,将一如图所示,将一个长方体截去一部分,个长方体截去一部分,

11、这个几何体的三视图是这个几何体的三视图是什么?什么?正视正视正视图正视图侧视图侧视图俯视图俯视图思考思考3:3:观察下列两个实物体,它们的结观察下列两个实物体,它们的结构特征如何?你能画出它们的三视图吗构特征如何?你能画出它们的三视图吗?正视图正视图侧视图侧视图俯视图俯视图正视图正视图侧视图侧视图俯视图俯视图思考思考4:4:如图,桌子上放着一个长方体和如图,桌子上放着一个长方体和一个圆柱,若把它们看作一个整体,你一个圆柱,若把它们看作一个整体,你能画出它们的三视图吗?能画出它们的三视图吗?正视正视正视图正视图侧视图侧视图俯视图俯视图知识探究(二):知识探究(二):将三视图还原成几何体将三视图还

12、原成几何体 一个空间几何体都对应一组三视图,一个空间几何体都对应一组三视图,若已知一个几何体的三视图,我们如何若已知一个几何体的三视图,我们如何去想象这个几何体的原形结构,并画出去想象这个几何体的原形结构,并画出其示意图呢?其示意图呢?思考思考1:1:下列两图分别是两个简单组合体下列两图分别是两个简单组合体的三视图,想象它们表示的组合体的结的三视图,想象它们表示的组合体的结构特征,并画出其示意图构特征,并画出其示意图. .侧视图侧视图俯视图俯视图正视图正视图侧视图侧视图俯视图俯视图正视图正视图思考思考2:2:下列两图分别是两个简单组合体下列两图分别是两个简单组合体的三视图,想象它们表示的组合体

13、的结的三视图,想象它们表示的组合体的结构特征,并作适当描述构特征,并作适当描述. .正视图正视图侧视图侧视图俯视图俯视图正视图正视图侧视图侧视图俯视图俯视图理论迁移理论迁移 例例1 1 下面物体的三视图有无错误?下面物体的三视图有无错误?如果有,请指出并改正如果有,请指出并改正. .正视正视俯视图俯视图正视图正视图侧视图侧视图 例例2 2 将一个长方体挖去两个小长方体将一个长方体挖去两个小长方体后剩余的部分如图所示,试画出这个组后剩余的部分如图所示,试画出这个组合体的三视图合体的三视图. .正视图正视图侧视图侧视图俯视图俯视图 例例3 3 说出下面的三视图表示的几何体说出下面的三视图表示的几何

14、体的结构特征的结构特征. .正视图正视图侧视图侧视图俯视图俯视图作业作业: : P P1515练习:练习:4.4. P P2020习题习题1.2A1.2A组:组:1 1,2.2.1.2 1.2 空间几何体的三视图和直观图空间几何体的三视图和直观图第三课时第三课时 空间几何体的直观图空间几何体的直观图 问题提出问题提出 1. 1.把一本书正面放置,其视觉效果把一本书正面放置,其视觉效果是一个矩形;把一本书水平放置,其视是一个矩形;把一本书水平放置,其视觉效果还是一个矩形吗?这涉及水平放觉效果还是一个矩形吗?这涉及水平放置的平面图形的画法问题置的平面图形的画法问题. . 2. 2.对于柱体、锥体、

15、台体及简单的组对于柱体、锥体、台体及简单的组合体,在平面上应怎样作图才具有强烈合体,在平面上应怎样作图才具有强烈的立体感?这涉及空间几何体的直观图的立体感?这涉及空间几何体的直观图的画法问题的画法问题. .知识探究(一)知识探究(一):水平放置的平面图形的画法水平放置的平面图形的画法 思考思考1:1:把一个矩形水平放置,从适当的把一个矩形水平放置,从适当的角度观察,给人以平行四边形的感觉,角度观察,给人以平行四边形的感觉,如图如图. .比较两图,其中哪些线段之间的位比较两图,其中哪些线段之间的位置关系、数量关系发生了变化?哪些没置关系、数量关系发生了变化?哪些没有发生变化?有发生变化?思考思考

16、2:2:把一个直角梯形水平放置得其直把一个直角梯形水平放置得其直观图如下,比较两图,其中哪些线段之观图如下,比较两图,其中哪些线段之间的位置关系、数量关系发生了变化?间的位置关系、数量关系发生了变化?哪些没有发生变化?哪些没有发生变化?思考思考3:3:画一个水平放置的平面图形的直画一个水平放置的平面图形的直观图,关键是确定直观图中各顶点的位观图,关键是确定直观图中各顶点的位置,我们可以借助平面坐标系解决这个置,我们可以借助平面坐标系解决这个问题问题. . 那么在画水平放置的直角梯形的那么在画水平放置的直角梯形的直观图时应如何操作?直观图时应如何操作?xyCABCDxyABD思考思考4:4:你能

17、用上述方法画水平放置的正你能用上述方法画水平放置的正六边形的直观图吗?六边形的直观图吗?yxoABCDEF MNxyoBCADEF MNBCADEF思考思考5:5:上述画水平放置的平面图形的直上述画水平放置的平面图形的直观图的方法叫做观图的方法叫做斜二测画法斜二测画法,你能概括,你能概括出斜二测画法的基本步骤和规则吗?出斜二测画法的基本步骤和规则吗?(1 1)建坐标系,定水平面;)建坐标系,定水平面;(3 3)水平线段等长,竖直线段减半)水平线段等长,竖直线段减半. .(2 2)与坐标轴平行的线段保持平行;)与坐标轴平行的线段保持平行;思考思考6:6:斜二测画法可以画任意多边形水斜二测画法可以

18、画任意多边形水平放置的直观图,如果把一个圆水平放平放置的直观图,如果把一个圆水平放置,看起来像什么图形?在实际画图时置,看起来像什么图形?在实际画图时有什么办法?有什么办法?知识知识探究(二探究(二):):空间几何体的直观图的画法空间几何体的直观图的画法 思考思考1:1:对于柱、锥、台等几何体的直观对于柱、锥、台等几何体的直观图,可用斜二测画法或椭圆模板画出一图,可用斜二测画法或椭圆模板画出一个底面,我们能否再用一个坐标确定底个底面,我们能否再用一个坐标确定底面外的点的位置?面外的点的位置?z zx xo oy y思考思考2:2:怎样画长、宽、高分别为怎样画长、宽、高分别为4cm4cm、3cm

19、3cm、2cm2cm的长方体的长方体ABCD-ABCDABCD-ABCD的的直观图?直观图?ABCDzABCDxyoPQABCDABCD思考思考3:3:怎样画底面是正三角形,且顶点怎样画底面是正三角形,且顶点在底面上的投影是底面中心的三棱锥?在底面上的投影是底面中心的三棱锥?ABCMzBCASyoxBCAS思考思考4:4:画棱柱、棱锥的直观图大致可分画棱柱、棱锥的直观图大致可分几个步骤进行?几个步骤进行?画轴画轴 画底面画底面成图成图画侧棱画侧棱思考思考5:5:已知一个几何体的三视图如下,已知一个几何体的三视图如下,这个几何体的结构特征如何?试用斜二这个几何体的结构特征如何?试用斜二测画法画出它的直观图测画法画出它的直观图. .侧视图侧视图俯视图俯视图正视图正视图zABoABo oxyxy理论迁移理论迁移 例例 如图,一个平面图形的水平放如图,一个平面图形的水平放置的斜二测直观图是一个等腰梯形,它置的斜二测直观图是一个等腰梯形,它的底角为的底角为4545,两腰和上底边长均为,两腰和上底边长均为1 1,求这个平面图形的面积,求这个平面图形的面积. .ABCDABCD精品课件精品课件!精品课件精品课件!作业作业: :P P1919练习:练习:2 2,3 3(做书上);(做书上);P P2121习题习题1.2A1.2A组:组:4 4,5.5.

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > PPT模板库 > PPT素材/模板

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号