《高考数学一轮复习 2.5 指数与指数函数课件 理 新人教B版》由会员分享,可在线阅读,更多相关《高考数学一轮复习 2.5 指数与指数函数课件 理 新人教B版(30页珍藏版)》请在金锄头文库上搜索。
1、2.5指数与指数函数必备知识关键能力-2-2-2-2-知识梳理考点自测1.根式(1)根式的概念(2)根式的性质必备知识关键能力-3-3-3-3-知识梳理考点自测2.实数指数幂(1)分数指数幂的表示0的正分数指数幂是,0的负分数指数幂无意义.(2)有理数指数幂的运算性质aras=(a0,r,sQ).(ar)s=(a0,r,sQ).(ab)r=(a0,b0,rQ).0 ar+s ars arbr 必备知识关键能力-4-4-4-4-知识梳理考点自测(3)无理数指数幂一般地,无理数指数幂a(a0,是无理数)是一个的实数,有理数指数幂的运算性质于无理数指数幂.确定 同样适用 必备知识关键能力-5-5-5
2、-5-知识梳理考点自测3.指数函数的图象和性质 上方 (0,1) 必备知识关键能力-6-6-6-6-知识梳理考点自测R (0,+) 单调递减 单调递增y=1 y1 0y1 0y1 必备知识关键能力-7-7-7-7-知识梳理考点自测23415 答案 答案关闭(1)(2)(3)(4)(5)必备知识关键能力-8-8-8-8-知识梳理考点自测234152.函数y=2|x|的值域为()A.0,+)B.1,+)C.(1,+)D.(0,1 答案解析解析关闭|x|0,2|x|1,+),故选B. 答案解析关闭B必备知识关键能力-9-9-9-9-知识梳理考点自测23415A.是偶函数,且在R上是增函数B.是奇函数
3、,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数 答案解析解析关闭 答案解析关闭必备知识关键能力-10-10-10-10-知识梳理考点自测234154.(2017广西桂林模拟)已知x0,a1)的图象,可将指数函数y=ax(a0,a1)的图象向右平移1个单位长度,再向上平移4个单位长度.则点(0,1)平移后得到点(1,5).故点P的坐标为(1,5).必备知识关键能力-17-17-17-17-考点1考点2考点3(3)曲线|y|=2x+1与直线y=b的图象如图所示.因为曲线|y|=2x+1与直线y=b没有公共点,所以-1b1.故b的取值范围是-1,1.必备知识关键能力-
4、18-18-18-18-考点1考点2考点3思考画指数函数的图象及应用指数函数的图象解决问题时应注意什么?解题心得解题心得1.画指数函数y=ax(a0,且a1)的图象,应抓住三个关键2.与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.3.一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.必备知识关键能力-19-19-19-19-考点1考点2考点3对点训练对点训练2(1)若函数y=2-x+1+m的图象不经过第一象限,则m的取值范围是;(2)若函数f(x)=ax-1(a0,且a1)的定义域和值域都是0,2,则实数a=. 答案解析解析关
5、闭 答案解析关闭必备知识关键能力-20-20-20-20-考点1考点2考点3考向1比较指数式的大小A.bacB.abcC.bcaD.ca0时,函数f(x)=(aex+b)(x-2)单调递增,且函数y=f(x-1)的图象关于直线x=1对称,则使得f(2-m)0成立的m的取值范围是()A.m|m2B.m|-2m2C.m|m4 D.m|0m2时,f(x)0;当x0.因为f(2-m)0,所以|2-m|2,解得m4或m0,故选C. 答案解析关闭C 必备知识关键能力-23-23-23-23-考点1考点2考点3思考如何求解指数型函数与函数性质的综合问题?解题心得解题心得1.比较两个指数幂的大小时,尽量化为同
6、底或同指.当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造同一幂函数,然后比较大小;当底数、指数均不同时,可以利用中间值比较.2.解决简单的指数方程或不等式的问题主要利用指数函数的单调性,要特别注意底数a的取值范围,并在必要时进行分类讨论.3.求解指数型函数与函数性质的综合问题,首先要明确指数型函数的构成,涉及值域、奇偶性、单调区间、最值等问题时,都要借助相关性质的知识分析判断.必备知识关键能力-24-24-24-24-考点1考点2考点3对点训练对点训练3(1)(2017河南信阳二调)已知A.cabB.abcC.bacD.cb1)在区间-1,1上的最大值是1
7、4,则a的值为()A.5B.1C.2D.3(3)已知函数f(x)=2|2x-m|(m为常数),若f(x)在区间2,+)内是增函数,则m的取值范围是.答案: (1)D(2)D(3)(-,4 必备知识关键能力-25-25-25-25-考点1考点2考点3必备知识关键能力-26-26-26-26-考点1考点2考点3必备知识关键能力-27-27-27-27-考点1考点2考点31.比较大小问题,常利用指数函数的单调性及中间值.2.指数型函数、方程及不等式问题,可利用指数函数的图象、性质求解.3.与指数型函数有关的恒成立问题:(1)当a1时,af(x)ag(x)恒成立f(x)g(x)恒成立f(x)-g(x)0恒成立f(x)-g(x)min0.(2)当0a1及0a1进行分类讨论.学科素养-28-思想方法数形结合思想解指数不等式典例(1)(2017吉林长春模拟)若存在正数x使2x(x-a)1成立,则a的取值范围是()A.(-,+)B.(-2,+)C.(0,+)D.(-1,+)答案:(1)D(2)(0,1)学科素养-29-学科素养-30- 由图知,当0x1时,y1y2,所以满足f(x)0的x的取值范围是(0,1). 反思反思提升提升一些关于指数的方程、不等式问题的求解,往往利用相应的函数图象,数形结合求解.