人教版八年级数学上册第11章单元测试卷及答案一、选择题(每小题3分,共30分)1.若一个三角形的两边长分别为5和8,则第三边长可能是( )A.14 B.10 C.3 D.22.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.垂线段最短 B.两点之间线段最短C.两点确定一条直线 D.三角形的稳定性3.画△ABC中AB边上的高,下列画法中正确的是( )A. B. C. D.4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于( )A.30° B.40° C.60° D.70°第4题图 第5题图 第6题图5.如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长6cm,则△ACD的周长为( )A.19cm B.22cm C.25cm D.31cm6.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是( )A.35° B.55° C.60° D.70°7.一个多边形的内角和是外角和的2倍,则这个多边形是( )A.四边形 B.五边形 C.六边形 D.八边形8.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为( )A.20° B.30° C.10° D.15°第8题图 第9题图 9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)10.一个角的两边与另一个角的两边互相垂直,且这两个角之差为40°,那么这两个角分别为( )A.70°和110° B.80°和120° C.40°和140° D.100°和140°二、填空题(每小题3分,共15分)11.如图,在△ABC中,∠ACB=90°,将△ACD沿CD折叠,使点A恰好落在BC边上的点E处.若∠B=25°,则∠BDE= 度.第11题图 第12题图 第13题图12.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A= .13.如图,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B,则∠1+∠2等于 度.14.如图,△ABC中,AD为中线,DE⊥AB于E,DF⊥AC于F,AB=3,AC=4,DF=1.5,则DE= .第14题图 第15题图 15. 如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2016BC和∠A20l6CD的平分线交于点A2017,则∠A2017= °.三、解答题(本大题共8个小题,满分75分)16.(8分)如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.17.(9分)如图,A点在B处的北偏东40°方向,C点在B处的北偏东85°方向,A点在C处的北偏西45°方向,求∠BAC及∠BCA的度数.18.(9分)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.19.(9分)如图所示,已知在△ABC中,∠B>∠C,AD为∠BAC的平分线,AE丄BC,垂足为E.求证:∠DAE=(∠B﹣∠C).20.(9分)一个多边形的内角和比外角和的3倍少180°,求(1)这个多边形的边数;(2)该多边形共有多少条对角线.21.(10分)如图,在△ABC中,点D在BC 上,点E 在AC 上,AD交BE于F.已知EG∥AD交BC于G,EH⊥BE交BC于H,∠HEG=50°.(1)求∠BFD的度数.(2)若∠BAD=∠EBC,∠C=42°,求∠BAC的度数.22.(10分)(1)如图1,点P为△ABC的内角平分线BP与CP的交点,求证:∠BPC=90°+∠A;(2)如图2,点P为△ABC内角平分线BP与外角平分线CP的交点,请直接写出∠BPC与∠A的关系;(3)如图3,点P是△ABC的外角平分线BP与CP的交点,请直接∠BPC与∠A的关系.23.(11分)将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C.(1)如图①,若∠A=40°时,点D在△ABC内,则∠ABC+∠ACB= 度,∠DBC+∠DCB= 度,∠ABD+∠ACD= 度;(2)如图②,改变直角三角板DEF的位置,使点D在△ABC内,请探究∠ABD+∠ACD与∠A之间存在怎样的数量关系,并验证你的结论.(3)如图③,改变直角三角板DEF的位置,使点D在△ABC外,且在AB边的左侧,直接写出∠ABD、∠ACD、∠A三者之间存在的数量关系. 第十一章 三角形单元测试卷参考答案一、选择题1.B2.D3.C4.A5.A 6.D 7.C8.A9.B10.A二、填空题11.11012.85°13.27014.215..三、解答题(共8小题)16.解:∵∠AFE=90°,∴∠AEF=90°﹣∠A=90°﹣35°=55°,∴∠CED=∠AEF=55°,∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°. 17.解:∵∠DBA=40°,∠DBC=85°,DB∥CE,∴∠ECB=180°﹣85°=95°,∠ABC=85°﹣40°=45°,∵∠ECA=45°,∴∠BCA=95°﹣45°=50°,∴∠BAC=180°﹣50°﹣45°=85°.18.解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF. 19.解:在Rt△AED中,∠DAE+∠ADE=90°,∵∠ADE=∠C+∠DAC,而∠DAC=∠BAC,∴∠DAE=90°﹣(∠C+∠BAC),又∵∠BAC=180°﹣∠B﹣∠C,∴∠DAE=90°﹣∠C﹣(180°﹣∠B﹣∠C)=90°﹣∠C﹣90°+∠B+∠C=(∠B﹣∠C).20.解:(1)设这个多边形的边数为n.根据题意得:180°×(n﹣2)=360°×3﹣180°,解得:n=7;(2)==14.答:(1)该多边形为七边形;(2)七边形共有14条对角线.21.解:(1)∵EH⊥BE,∴∠BEH=90°,∵∠HEG=50°,∴∠BEG=40°,又∵EG∥AD,∴∠BFD=∠BEG=40°;(2)∵∠BFD=∠BAD+∠ABE,∠BAD=∠EBC,∴∠BFD=∠EBC+∠ABE=∠ABC=40°,∵∠C=42°,∴∠BAC=180°﹣∠ABC﹣∠C=180°﹣40°﹣42°=98°.22.证明:(1)∵∠PBC+∠BCP+∠BPC=180°,∵∠BPC=120°,∴∠ABC+∠ACB=60°,∵BP、CP是角平分线,∴∠ABC=2∠PBC,∠ACB=2∠BCP,∵∠ABC+∠ACB+∠A=180°,∴∠BPC=90°+∠A;(2)∠P=∠A,理由如下:∵△ABC的内角平分线BP与外角平分线CP交于P,∴∠PBC=∠ABC,∠PCD=∠ACD,∵∠ACD=∠A+∠ABC,∠PCD=∠PBC+∠P,∴(∠A+∠ABC)=∠PBC+∠P=∠ABC+∠P,∴∠P=∠A;(3)∠P=90°﹣∠A,理由如下:∵BP、CP是△ABC的外角平分线,∴∠PBC=(∠A+∠ACB),∠PCB=(∠A+∠ABC),又∵∠PBC+∠PCB+∠P=180°,∴∠P=180°﹣(∠PBC+∠PCB)=180°﹣(∠A+∠ACB+∠A+∠ABC)=180°﹣(180+∠A)=90°﹣∠A.23.解:(1)在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=140°﹣90°=50°;故答案为:140;90;50. (2)∠ABD+∠ACD与∠A之间的数量关系为:∠ABD+∠ACD=90°﹣∠A.证明如下:在△ABC中,∠ABC+∠ACB=180°﹣∠A. 在△DBC中,∠DBC+∠DCB=90°. ∴∠ABC+∠ACB﹣(∠DBC+∠DCB)=180°﹣∠A﹣90°.∴∠ABD+∠ACD=90°﹣∠A. (3)∠ACD﹣∠ABD=90°﹣∠A. 学科网(北京)股份有限公司。